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SECTION–A 

ANSWERALL Q UESTION S:      (5×2=10) 
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2. State the Mean value property on Harmonic functions. 
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4. Define Equicontinuous family and Normal family of functions. 

5. When do we say )(tφ determines an analytic arc? 

 

SECTION–B 
ANSWERANYFIVEQUESTIONS:    (5×6=30) 

 

6. State and prove Cauchy’s Theorem for a Rectangle. 

7. If 
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u and 
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on the complement of the positive real axis as 
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9. Obtain a product representation ofsin ��. 

 

10. Show that convergence with respect to ρ  is equivalent to uniform convergence on all 

compact sets. 

 

11. Prove that the functions )(wFz =  which map 1|| <w conformally onto polygons with 

angles ),........2,1( nkk =πα are of the form '
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kkk w,1 αβ −=  are points on the unit circle and C and 'C  are complex constants. 

12. Discuss the flow in the first quadrant 0x > , 0y >  whose complex potential is 

2 2 2 2z x y i xyω = = − + , determining the stream line and stream function. 
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SECTION–C 

 

ANSWERANYTHREEQUESTIONS:    (3×20 =60) 
 

13. a) State and prove Cauchy theorem on a disc. 

b) State and prove Cauchy Integral Formula. 

 

14. a) Prove that if���� is analytic in Ω then ( ) 0f z dz

γ

=∫ for every cycle γ  which is  

homologous to zero in Ω . 

b) Suppose that )(zu  is harmonic for |�| 
 �, continuous for Rz ≤|| , prove that   
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15. a)State and prove Mittag –Leffler theorem. 

b) Prove that )1()1(
2
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Legendre’s duplication formula. 

 

16. a) State and prove Arzela Ascoli theorem. 

b)Prove that a locally bounded family of analytic functions has locally bounded  

derivatives. 

 

17.   State and prove Riemann Mapping Theorem 
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