STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE: 15MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : CORE

PAPER : COMPLEX ANALYSIS

TIME : 3 HOURS MAX. MARKS: 100

SECTION-A

ANSWERALL QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Compute $\int_{|z|=2} \frac{dz}{z^2 1}$.
- 2. State the Mean value property on Harmonic functions.
- 3. Prove that $\zeta(s)\Gamma(s) = \int_{0}^{\infty} \frac{x^{s-1}}{e^x 1} dx$.
- 4. Define Equicontinuous family and Normal family of functions.
- 5. When do we say $\phi(t)$ determines an analytic arc?

SECTION-B

ANSWERANYFIVEQUESTIONS:

 $(5 \times 6 = 30)$

- 6. State and prove Cauchy's Theorem for a Rectangle.
- 7. If u_1 and u_2 are harmonic in a region Ω then prove that $\int_{\gamma} u_1 * du_2 u_2 * du_1 = 0$.
- 8. For $\sigma = \text{Re}(s) > 1$, prove that $\zeta(s) = -\frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-z)^{s-1}}{e^z 1} dz$, where $(-z)^{s-1}$ is defined on the complement of the positive real axis as $e^{(s-1)\log(-z)}$ with $-\pi < \text{Im}\log(-z) < \pi$.
- 9. Obtain a product representation of $\sin \pi z$.
- 10. Show that convergence with respect to ρ is equivalent to uniform convergence on all compact sets.
- 11. Prove that the functions z = F(w) which map |w| < 1 conformally onto polygons with angles $\alpha_k \pi(k=1,2,....n)$ are of the form $F(w) = C \int_0^w \prod_{k=1}^n (w-w_k)^{-\beta_k} dw + C'$, where $\beta_k = 1 \alpha_k$, w_k are points on the unit circle and C and C' are complex constants.
- 12. Discuss the flow in the first quadrant x>0, y>0 whose complex potential is $\omega = z^2 = x^2 y^2 + i2xy$, determining the stream line and stream function.

SECTION-C

ANSWERANYTHREEQUESTIONS:

 $(3 \times 20 = 60)$

- 13. a) State and prove Cauchy theorem on a disc.
 - b) State and prove Cauchy Integral Formula.
- 14. a) Prove that if f(z) is analytic in Ω then $\int_{\gamma} f(z)dz = 0$ for every cycle γ which is

homologous to zero in Ω .

b) Suppose that u(z) is harmonic for |z| < R, continuous for $|z| \le R$, prove that

$$u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta \text{ for all } |a| < R.$$

- 15. a)State and prove Mittag –Leffler theorem.
 - b) Prove that $\zeta(s) = 2^s \pi^{s-1} Sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$. Using this result derive the Legendre's duplication formula.
- 16. a) State and prove Arzela Ascoli theorem.b)Prove that a locally bounded family of analytic functions has locally bounded derivatives.
- 17. State and prove Riemann Mapping Theorem

