STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16)

SUBJECT CODE : 15PH/MC/OS34 B.Sc. DEGREE EXAMINATION NOVEMBER 2016 BRANCH III - PHYSICS THIRD SEMESTER

		REG. No						
		OR – CORE						
		ICS AND SPE	CTROS	SCOPY	N / A N /	MADIZC 20		
11	ME : 30 M				MAX	. MARKS : 30		
	TO DE ANG		CTION		A DED 1TG			
TO BE ANSWERED IN THE QUESTION PAPER ITSELF								
ANSWER ALL QUESTIONS:(30 x 1 = 30)ICHOOSE THE CORRECT ANSWERS:								
1			v Lind.					
1.	The power of convex len	ns is						
	a) negative	b) positive		c) zero		d) one		
	-	-						
2.	This explains why light							
	a) Fermat's principle	b) snell's law	r	c) Brewste	r's law	d) none		
			2					
3.	The aberrations produce	d by the variation	on of re	fractive inde	ex with wa	velength of light are		
	called	1.)	-) 1 -		.1) .1			
	a) Spherical aberration	b) coma	c) ach	romatism	a) chr	omatic aberrations		
4.	The condition for bright	fringes is nath	differen	ce should be	equal to			
	a) $(2n+1)\lambda/2$	b) $n\lambda$	uniteren	c) 2n-1λ	equal to	d) (n+2)λ		
		0) 111		c) 211 170				
5.	The radii of the dark rin	gs are proportio	nal to					
	a) Square root of the odd			b) Square of	of the odd	natural numbers		
	c) Square root of the nat			d) none				
6.	In Michelson's interfero					-		
	a) Division of wavefrom	t b) divisi	on of an	nplitude	c) reflect	tion d) none		
7	The error of each helf re							
7.	The area of each half pe							
	a) nbλ	b) lbλ		c) πbλ		d) Ynql		
0	The adaptation to see the	a alaga abiasta a		ata anas is a	allad			
8.	The adaptation to see the a) perception	b) resolution	as separa	c) dispersio		d) cohesion		
	a) perception	b) resolution		c) dispersio	JII	u) conesion		
9.	Diffraction is observed	when the size of	f the obs	stacle is com	parable to	the		
	a) wavelength of the light) freque		amplitude	d) velocity		
	.,		, - 1		I			
10	. The phenomenon confir	ms that the light	t wave a	are transvers	e waves.			
	a) reflection	b) refraction		c) diffracti	on	d) polarization		
11	. The rays that obey snell							
	a) extra ordinary rays	b) longitudina	al rays	c) ordinary	v rays	d) sound waves		
10	The helf 1	4 a a 4 b a 1 a C	·	tion - f 1 .		-h4 4h ages - 1-		
12	. The half wave plate rota $a > 3\Theta$	-	potarisa		incluent lig	· •		
	a) 30	b) θ		c) 20		d) 40		

13. Incandescent solids like ia) line spectra	-	L	ra d) none				
14. Solar spectrum was firsta) Newton	•	c) Huygen	d) Einstein				
15. Fluorescence is exhibited a) calcium sulphide	~	c) calcite	d) quinine sulphate				
II FILL IN THE BLANKS:							
16. The unit of power of a lens is							
17. The wavelength of light wave in a medium.							
18. The reciprocal of d Θ measures the resolving power of							
19. The line bisecting any two blunt corners is							

20. Carbon compounds emit ______ spectra.

III STATE WHETHER TRUE OR FALSE:

- 21. Refractive index decreases as the wavelength increases.
- 22. A biprism creates two real coherent sources.
- 23. The numerical aperture of electron microscope is greater than the ordinary microscope.
- 24. The most common uniaxial crystal is calcite.
- 25. The spectrographs used for studying infrared spectra employ mirrors.

IV ANSWER BRIEFLY:

26. What is coma?

- 27. State principle of superposition:
- 28. What is a zone plate?
- 29. Define double refraction.
- 30. Mention any two applications of infrared spectroscopy:

$\times \times \times \times \times \times \times$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2015-16)

SUBJECT CODE : 15PH/MC/OS34

B.Sc. DEGREE EXAMINATION NOVEMBER 2016 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	OPTICS AND SPECTROSCOPY
TIME	:	2 ¹ / ₂ HOURS

MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. A convex lens of thickness 6 cm has radii of curvature 8 cm and 10 cm. Find the focal length and position of focal points and the principal points.
- 2. Calculate the separation between the coherent sources formed by a biprism whose inclined faces make angles of 2° with its base, the slit being 10 cm away from the biprism(μ =1.50).
- 3. A single slit of width 0.14 mm is illuminated normally by monochromatic light and diffraction bands are observed on a screen 2 m away. If the centre of the second dark band is 1.6 cm from the middle of the central bright band, deduce the wavelength of the light used.
- 4. Find the thickness of a quarter wave plate when the wavelength of light is 5890Å and $\mu_E=1.553$ and $\mu_O=1.544$.
- 5. Explain how a plane and circularly polarized light can be produced and analyzed using Nicol prism and Quarter Wave Plate.
- 6. Give the theory of Newton's rings. How is the wavelength of sodium light determined by Newton's rings method?
- 7. With a neat diagram explain spectrophotometer.

SECTION – C

ANSWER ANY THREE QUESTIONS:

$(3 \times 15 = 45)$

- 8. Explain with the help of a neat diagram, the construction and working of a Huygens's eyepiece. Why is it referred to as a theoretically perfect but a negative eyepiece?
- 9. Describe Michelson's interferometer with a neat diagram. How is the wavelength of light determined by using Michelson's interferometer?
- 10. Give the theory of a diffraction grating. Describe in detail how you would use a transmission grating for measuring the wavelength of light.

- 11. Define specific rotator power. Describe the construction and working of Laurent's half shade polarimeter. Explain briefly how is it used to determine the specific rotation of sugar solution.
- 12. Explain the quantum theory of Raman effect briefly. Discuss the origin of stokes and antistokes lines. Explain how Raman effect is used in the study of molecular structure.

$\times \times \times \times \times \times \times$