STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16)

SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: MAJOR – CORE	
PAPER	VECTOR ANALYSIS AND ITS APPLICATIONS	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION-A Answer All the questions (10 x 2 = 20)

1. Suppose $A = 5u^2i + uj - u^3k$ and $B = \sin ui - \cos uj$. Find $\frac{d(A,B)}{du}$.

- 2. Define continuity of scalar & vector function.
- 3. Define curl.
- 4. Suppose $A = x^2 z^2 i 2y^2 z^2 j + xy^2 zk$. Find *div* A at the point p(1, -1, 1).
- 5. Define volume integrals.
- 6. If $f(t) = (3t^2 t)i + (2 6t)j 4tk$, find $\frac{4}{2}f(t) dt$.
- 7. Write Frenet-Serret formulae.
- 8. Define arc length.
- 9. Find the area of the ellipse $x = a \cos \theta$, $y = b \sin \theta$.
- 10. State Stokes' theorem.

- 11. Suppose a particle P moves along a curve whose parametric equations, where 't' is time, follows: $x = 40t^2 + 8t$, $y = 2\cos 3t$, $z = 2\sin 3t$.
 - (a) Determine its velocity & acceleration at any time.
 - (b) Find the magnitudes of the velocity and acceleration at t = 0.

12. (a) Suppose $\varphi(x, y, z) = xy^2 z$ and $A = xzi - xy^2 j + yz^2 k$. Find $\frac{\partial^3(\varphi A)}{\partial x^2 \partial z}$ at the

- point (2, -1, 1).
- (b) Show that $\frac{dA}{dt} = A \frac{dA}{dt}$.
- 13. Show that
 - (a) The vector $A = 3y^4 z^2 i + 4x^3 z^2 j 3x^2 y^2 k$ is solenoidal and
 - (b) The vector $B = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational.

- /2/
- 14. If the acceleration of a particle at any time $t \ge 0$ is given by

$$a = \frac{d^2r}{dt^2} = (25\cos 2t)\iota + (16\sin 2t)J + (9t)k$$
 then fine the displacement.

15. Evaluate $\int_{V} \overrightarrow{Fdv}$, where $F = xy\iota - zxj + k$, and V is the octant of the sphere

 $x^{2} + y^{2} + z^{2} = 4, \ x \ge 0, \ y \ge 0, \ z \ge 0.$

16. Determine a unit normal to the following surface, where a > 9,

 $r = a\cos u \sin v \,\iota + a\sin u \sin v \,\jmath + a\cos v \,k.$

17. Verify Green's theorem in the plane $\iint_{C} (xy + y^2) dx + x^2 dy$ where *C* is the closed curve

of the region bounded by $y = x \& y = x^2$.

SECTION-C Answer any TWO questions (2 x 20 = 40)

- 18. Suppose $A = (3x^2 + 6y)i 14yzj + 20xz^2k$. Evaluate A dr from (0, 0, 0) to
 - (1, 1, 1) along the following paths *C*.
 - (a) x = t, $y = t^2$, $z = t^3$.
 - (b) The straight lines from (0,0,0) to (1,0,0), then to (1,1,0) and then to (1,1,1).
 - (c) The straight line joining (0,0,0) and (1,1,1).

19. Express in cylindrical coordinates the quantities

- (a) $\nabla \varphi$ (b) ∇A (c) $\nabla \times A$ (d) $\nabla^2 \varphi$
- 20. Verify Divergence theorem for $F = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.