STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE: 15MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND ITS APPLICATIONS
TIME : 3 HOURS MAX. MARKS : 100

SECTION-A

Answer All the questions
$(10 \times 2=20)$

1. Suppose $A=5 u^{2} \imath+u \jmath-u^{3} k$ and $B=\sin u \imath-\cos u_{\jmath}$. Find $\frac{d(A \cdot B)}{d u}$.
2. Define continuity of scalar $\&$ vector function.
3. Define curl.
4. Suppose $A=x^{2} z^{2} \imath-2 y^{2} z^{2} \jmath+x y^{2} z k$. Find $\operatorname{div} A$ at the point $p(1,-1,1)$.
5. Define volume integrals.
6. If $f(t)=\left(3 t^{2}-t\right) \iota+(2-6 t) \jmath-4 t k$, find ${ }_{2}^{4} f(t) d t$.
7. Write Frenet-Serret formulae.
8. Define arc length.
9. Find the area of the ellipse $x=a \cos \theta, y=b \sin \theta$.
10. State Stokes' theorem.

SECTION-B

Answer any FIVE questions
11. Suppose a particle P moves along a curve whose parametric equations, where ' t ' is time, follows: $x=40 t^{2}+8 t, y=2 \cos 3 t, z=2 \sin 3 t$.
(a) Determine its velocity \& acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at $t=0$.
12. (a) Suppose $\varphi(x, y, z)=x y^{2} z$ and $A=x z \iota-x y^{2} \jmath+y z^{2} k$. Find $\frac{\partial^{3}(\varphi A)}{\partial x^{2} \partial z}$ at the point $(2,-1,1)$.
(b) Show that $\cdot \frac{d A}{d t}=A \frac{d A}{d t}$.
13. Show that
(a) The vector $A=3 y^{4} z^{2} \imath+4 x^{3} z^{2} \jmath-3 x^{2} y^{2} k$ is solenoidal and
(b) The vector $B=\left(6 x y+z^{3}\right) l+\left(3 x^{2}-z\right) J+\left(3 x z^{2}-y\right) k$ is irrotational.
14. If the acceleration of a particle at any time $t \geq 0$ is given by $a=\frac{d^{2} r}{d t^{2}}=(25 \cos 2 t) \iota+(16 \sin 2 t) J+(9 t) k$ then fine the displacement.
15. Evaluate $\int_{V} \overrightarrow{F d v}$, where $F=x y \imath-z x_{J}+k$, and V is the octant of the sphere $x^{2}+y^{2}+z^{2}=4, x \geq 0, y \geq 0, z \geq 0$.
16. Determine a unit normal to the following surface, where $a>9$, $r=a \cos u \sin v \imath+a \sin u \sin v \jmath+a \cos v k$.
17. Verify Green's theorem in the plane $\prod_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x \& y=x^{2}$.

SECTION-C
 Answer any TWO questions

18. Suppose $A=\left(3 x^{2}+6 y\right) \iota-14 y z \jmath+20 x z^{2} k$. Evaluate ${ }_{c} A d r$ from $(0,0,0)$ to $(1,1,1)$ along the following paths C.
(a) $x=t, y=t^{2}, z=t^{3}$.
(b) The straight lines from $(0,0,0)$ to $(1,0,0)$, then to $(1,1,0)$ and then to $(1,1,1)$.
(c) The straight line joining $(0,0,0)$ and $(1,1,1)$.
19. Express in cylindrical coordinates the quantities
(a) $\nabla \varphi$
(b) $\nabla \cdot A$
(c) $\nabla \times A$
(d) $\nabla^{2} \varphi$
20. Verify Divergence theorem for $F=\left(x^{2}-y z\right) l+\left(y^{2}-z x\right) J+\left(z^{2}-x y\right) k$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

hachachal

