SUBJECT CODE : 15MT/MC/DC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : MAJOR - CORE
PAPER : DIFFERENTIAL CALCULUS

MAX. MARKS : 100

SECTION - A
 ANSWER ALL THE QUESTIONS

(10X2=20)

1. Write down the nth derivative of $\sin (a x+b)$.
2. If $x y=a e^{x}+b e^{-x}$, prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$.
3. Define envelopeof the family of curves.
4. Find the envelope of the family of straight lines $y=m x+\frac{a}{m}$,the parameter being' m^{\prime}.
5. Write down the formula for the coordinates of the centre of curvature of a curve.
6. Find the radius of curvature for the curve $y=e^{x}$.
7. Define evolute of a curve.
8. Define the chord of curvature.
9. Write down the condition for maxima and minima functions of two variables.
10. When do you say that a curve is symmetrical with respect to the x-axis?

SECTION - B
 ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$
11. Find y_{n}, if $y=\frac{x^{2}}{(x+2) x-1^{2}}$.
12. If $=\sin \theta, y=\cos p \theta$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+p^{2} y=0$.
13. Find the envelope of the circles drawn on the radius vectors of the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as diameter.
14. Find the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$.
15. Find the radius of curvature of the curve $y^{2}=\frac{a^{2}(a-x)}{x}$ at $(a, 0)$.
16. Find the radius of curvature of the curve $r^{n}=a^{n} \cos n \theta$.
17. Trace the curve $y^{2}=x^{2} \frac{a+x}{b-x}$.

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

18. (a) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that

$$
1-x^{2} y_{n+2}-2 n+1 x y_{n+1}+m^{2}-n^{2} y_{n}=0 .
$$

(b) Find the envelope of the straight lines $\frac{x}{a}+\frac{y}{b}=1$,where the parameters are related by the equation $a^{2}+b^{2}=c^{2}$ where c is a constant . $(10+10)$
19. (a) Find the coordinates of the centre of curvature of the curve $y^{2}=4 a x$ at the point ' t '.
(b) Find the $p-r$ equation of the curve $r=a(1-\cos \theta)$. Hence deduce the radius of curvature. $\quad(10+10)$
20. Discuss the maxima and minima of the function $x^{3} y^{2}(6-x-y)$.

