STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16& thereafter)

SUBJECT CODE: 15MT/MC/DC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	DIFFERENTIAL CALCULUS
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A ANSWER ALL THE QUESTIONS

(10X2=20)

1. Write down the nth derivative of sin(ax + b).

2. If $xy = ae^{x} + be^{-x}$, prove that $x \frac{d^{2y}}{dx^{2}} + 2\frac{dy}{dx} - xy = 0$.

3. Define envelope of the family of curves.

4. Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$, the parameter being'm'.

5. Write down the formula for the coordinates of the centre of curvature of a curve.

- 6. Find the radius of curvature for the curve $y = e^x$.
- 7. Define evolute of a curve.

- 8. Define the chord of curvature.
- 9. Write down the condition for maxima and minima functions of two variables.
- 10. When do you say that a curve is symmetrical with respect to the x axis?

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

11. Find y_n , if $y = \frac{x^2}{(x+2)|x-1|^2}$.

12. If $= \sin \theta$, $y = \cos p\theta$, prove that $(1 - x^2) y_2 - xy_1 + p^2 y = 0$.

13. Find the envelope of the circles drawn on the radius vectors of the ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ as diameter.

14. Find the radius of curvature at any point of the cycloid $x = a (\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$.

15. Find the radius of curvature of the curve $y^2 = \frac{a^2(a-x)}{x}$ at (a, 0).

- 16. Find the radius of curvature of the curve $r^n = a^n \cos n\theta$.
- 17. Trace the curve $y^2 = x^2 \frac{a+x}{b-x}$.

15MT/MC/DC14

(2X20=40)

SECTION – C ANSWER ANY TWO QUESTIONS

18. (a) If $y = sin (m sin^{-1} x)$, prove that

 $1 - x^2 y_{n+2} - 2n + 1 x y_{n+1} + m^2 - n^2 y_n = 0.$

(b) Find the envelope of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$, where the parameters are related by the equation $a^2 + b^2 = c^2$ where *c* is a constant. (10 + 10)

19. (a) Find the coordinates of the centre of curvature of the curve $y^2 = 4ax$ at the point 't'.

(b) Find the p - r equation of the curve $r = a(1 - \cos \theta)$. Hence deduce the radius of curvature. (10 + 10)

20. Discuss the maxima and minima of the function $x^3y^2(6-x-y)$.