STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2015–16& thereafter)

SUBJECT CODE:15MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : MAJOR - CORE

: ALGEBRA AND TRIGONOMETRY **PAPER**

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A (10X2=20)ANSWER ALL THE OUESTIONS

- 1. Find the equation whose roots are the roots of $x^5 + 6x^4 + 6x^3 7x^2 + 2x 1 = 0$ with the signs changed
- 2. Remove the fractional coefficients from the equation $x^3 \frac{1}{4}x^2 + \frac{1}{3}x 1 = 0$
- 3. Diminish by 3 the roots of the equation $x^5 4x^4 + 3x^2 4x + 6 = 0$.
- 4. Find the nature of the roots of the equation $x^6 + 3x^2 5x + 1 = 0$
- 5. Define orthogonal matrices
- 6. State Cayley Hamilton Theorem
- 7. Express $\cos^5 \theta$ in series of cosines of multiples of θ
- 8. Prove that $\cosh 2x = \cosh^2 x + \sinh^2 x$
- 9. If $\sin A + iB = x + iy$, prove that $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$
- 10. Show that $\log 1 + i \tan \alpha = \log \sec \alpha + i\alpha$

SECTION - B (5X8=40)**ANSWER ANY FIVE QUESTIONS**

- 11. Show that the roots of the equation $x^3 + px^2 + qx + r = 0$ are in arithmetic progression if $2p^3 - 9pq + 27r = 0$.
- 12. If α , β , γ are the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$, form the equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$.
- 13. Calculate A^4 using Cayley Hamilton theorem given $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ 14. Find the Eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$
- 15. If $\frac{\sin \theta}{\theta} = \frac{5045}{5046}$ show that $\theta = 1^{\circ}58'$ approximately, given $\frac{\sin \theta}{\theta} \to 1$ as $\theta \to 0$, θ is measured in radians.
- 16. Separate into real and imaginary parts tanh(1 + i).
- 17. Express $tanh^{-1} x$ in logarithmic form and deduce that

$$\tanh^{-1} x = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots$$

SECTION – C ANSWER ANY TWO QUESTIONS

(2X20=40)

- 18. a) Find the positive root of the equation $x^3 2x^2 3x 4 = 0$ correct to three places of decimals using Horner's method.
 - b) Separate $\sin A + iB$ into real and imaginary parts. Hence show that if its modulus be unity, $\sinh^2 B \cos^2 A = 0$. (15+5)
- 19. a) Show that the equation $x^4 3x^3 + 4x^2 2x + 1 = 0$ can be transformed into a reciprocal equation by diminishing the roots by unity. Hence solve the equation.
 - b) Find the value of Log $\frac{1+\cos\theta+i\sin\theta}{\cos\theta-1+i\sin\theta}$. (10+10)
- 20. a)Diagonalize the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
 - b) If $\cosh u = \sec \theta$, show that $u = \log \tan \frac{\pi}{4} + \frac{\theta}{2}$ (12+8)

