SUBJECT CODE :15MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ MAJOR - CORE
PAPER	$:$ ALGEBRA AND TRIGONOMETRY
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

(10X2=20)

ANSWER ALL THE QUESTIONS

1. Find the equation whose roots are the roots of $x^{5}+6 x^{4}+6 x^{3}-7 x^{2}+2 x-1=0$ with the signs changed
2. Remove the fractional coefficients from the equation $x^{3}-\frac{1}{4} x^{2}+\frac{1}{3} x-1=0$
3. Diminish by 3 the roots of the equation $x^{5}-4 x^{4}+3 x^{2}-4 x+6=0$.
4. Find the nature of the roots of the equation $x^{6}+3 x^{2}-5 x+1=0$
5. Define orthogonal matrices
6. State Cayley Hamilton Theorem
7. Express $\cos ^{5} \theta$ in series of cosines of multiples of θ
8. Prove that $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
9. If $\sin A+i B=x+i y$, prove that $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$
10. Show that $\log 1+i \tan \alpha=\log \sec \alpha+i \alpha$

> SECTION - B
$(5 \times 8=40)$

ANSWER ANY FIVE QUESTIONS

11. Show that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in arithmetic progression if $2 p^{3}-9 p q+27 r=0$.
12. If α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$, form the equation whose roots are $\alpha \beta, \beta \gamma$ and $\gamma \alpha$.
13. Calculate A^{4} using Cayley Hamilton theorem given $A=\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}$
14. Find the Eigen values of the matrix $A=\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}$
15. If $\frac{\sin \theta}{\theta}=\frac{5045}{5046}$ show that $\theta=1^{\circ} 58^{\prime}$ approximately, given $\frac{\sin \theta}{\theta} \rightarrow 1$ as $\theta \rightarrow 0, \theta$ is measured in radians.
16. Separate into real and imaginary parts $\tanh (1+i)$.
17. Express $\tanh ^{-1} x$ in logarithmic form and deduce that

$$
\tanh ^{-1} x=x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots
$$

SECTION - C
 ANSWER ANY TWO QUESTIONS

($2 \mathrm{X20}=40$)
18. a)Find the positive root of the equation $x^{3}-2 x^{2}-3 x-4=0$ correct to three places of decimals using Horner's method.
b) Separate $\sin A+i B$ into real and imaginary parts. Hence show that if its modulus be unity, $\sinh ^{2} B-\cos ^{2} A=0$.
19. a) Show that the equation $x^{4}-3 x^{3}+4 x^{2}-2 x+1=0$ can be transformed into a reciprocalequation by diminishing the roots by unity. Hence solve the equation.
b) Find the value of $\log \frac{1+\cos \theta+\operatorname{isin} \theta}{\cos \theta-1+\operatorname{isin} \theta}$. $\quad(10+10)$
20. a)Diagonalize the matrix $A=\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}$
b) If $\cosh u=\sec \theta$, show that $u=\log \tan \frac{\pi}{4}+\frac{\theta}{2} \quad(12+8)$

