STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE : 11MT/ME/NA53

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016 BRANCH I - MATHEMATICS FIFTH SEMESTER

	SECTION – A	(10X2=20)
TIME	: 3 HOURS	MAX. MARKS : 100
PAPER	: NUMERICAL ANALYSIS	
COURSE	: MAJOR – ELECTIVE	

ANSWER ALL THE QUESTIONS

- 1. Write the formula to find the value of $\overline{8}$ using Newton-Raphson method.
- 2. Show that $\mu^2 = 1 + \frac{1}{4} \delta^2$.
- 3. Find the missing value if y = f(x) is a polynomial of degree two
 - *x* 2 3 4 5 6 7
 - y 7 12 19 ? 39 52
- 4. State Gauss backward formula for interpolation.
- 5. Write the formula for first derivative corresponding to Newton's backward formula by setting $x = x_n$.
- 6. Write the error in using the trapezoidal formula.
- 7. State the general problem of numerical integration.
- 8. Given $\frac{dy}{dx} = x + y$, y(0) = 0. Compute $y(0 \cdot 4)$ using Euler's method. (Choose $h = 0 \cdot 2$).
- 9. Given $\frac{dy}{dx} = 1 + xy$ and y(0) = 1. Obtain the Taylor's series for y(x).
- 10. Use Picard's method to solve $\frac{dy}{dx} = x + y^2$ subject to the condition y = 1 when x = 0 (first approximation only).

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. Find a real root of the equation $x^3 2x 5 = 0$ correct to three places of decimals using bisection method.
- 12. Derive Gauss forward formula for interpolation.
- 13. If y(1) = -3, y(3) = 9, y(4) = 30 and y = 6 = 132, find the value of y(2) using Lagrange's interpolation formula.
- 14. From the following table, find x, correct to two decimal places for which y is maximum and find this value of y.
 - X 1 2 1 3 1 4 1 5 1 6
 - Y 0.9320 0.9636 0.9855 0.9975 0.9996
- 15. Apply Simpson's one-third rule to evaluate $\frac{10}{2} \frac{dx}{1+x}$ by dividing the range into 8 equal parts.
- 16. Find the value of π from $\begin{bmatrix} 1 \\ 0 \\ 1+x^2 \end{bmatrix}$ by taking 4 equal parts.
- 17. Use modified Euler's method to determine the value of y when $x = \cdot 1$ given that y(0) = 1 and $y' = x^2 + y$ (Take $h = 0 \cdot 05$).

..2

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

18. Derive Stirling's formula for interpolation and use it to find u_{32} from $u_{20} = 14 \cdot 035$, $u_{25} = 13 \cdot 674$, $u_{30} = 13 \cdot 257$, $u_{35} = 12 \cdot 734$, $u_{40} = 12 \cdot 089$.

19. i) Solve the following system using Gauss method

2x + y + z = 10 3x + 2y + 3z = 18x + 4y + 9z = 16

ii) From the table of values of x and y obtain $\frac{dy}{dx}$ for x = 1.2

x	1.2	1.4	1.6	1.8	2.0
у	3.3201	4.0552	4.9530	6.0496	7.3891

20. i) Apply Simpson's three - eighth rule to evaluate $\int_{0}^{\pi/2} \overline{sinx} dx$ (Take $h = \frac{\pi}{12}$). ii) Using Runge-Kutta method solve $\frac{dy}{dx} = y - x$ for $x = \cdot 1$ where y(0) = 2 (Take $h = \cdot 1$)