STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2011-12 \& thereafter)
SUBJECT CODE : 11MT/MC/ME54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2016

```
BRANCH I - MATHEMATICS
FIFTH SEMESTER
COURSE : MAJOR - CORE
PAPER : MECHANICS
TIME : 3 HOURS MAX. MARKS : 100
```


ANSWER ALL THE QUESTIONS

```
1. Define : Force.
2. State Varignons theorem.
3. Define : Angle of friction.
4. State the laws of kinetic friction.
5. If the distance \(x\) of a point on a straight line measured from a fixed origin on it and its velocity \(v\) are connected by the relation \(4 v^{2}=25-x^{2}\), show that the motion is simple harmonic.
```

6. Define : Seconds Pendulum.
7. A particle is projected with a velocity of $490 \mathrm{~m} / \mathrm{sec}$, at an elevation of 30°. Find the horizontal range.
8. Write the formula for the greatest height attained and the time of flight for a projectile.
9. What are the components of acceleration in the radial and transverse directions?
10. Define : central force.

SECTION - B ANSWER ANY FIVE QUESTIONS

11. Two like parallel forces P and $Q(P>Q)$ act at points A and B of a rigid body. If P and Q are interchanged, show that the point of the resultant is displaced by $\frac{P-Q}{P+Q} A B$.
12. A ladder rests in limiting equilibrium with its lower end on a rough horizontal plane and the other end against a rough vertical wall. The centre of gravity divides the ladder into two portions of lengths a and b. Find the position of limiting equilibrium.
13. Prove that the composition of two Simple Harmonic motions of the same period and in the same straight line is again a Simple Harmonic Motion.
14. A particle is thrown over a triangle from one end of its horizontal base and, grazing the vertex, falls on the other end of the base. If B, C the base angles and α the angle of projection, prove that $\tan \alpha=\tan B+\tan C$.
15. Find the differential equation of a central orbit in $p-r$ form.
16. Three forces P, Q and R acting at O are in equilibrium. The angle between P and Q is double the angle between R and P. Show that $R^{2}+P Q=Q^{2}$.
17. A seconds pendulum is carried down with a lift at a uniform acceleration of $20 \mathrm{~cm} / \mathrm{sec}^{2}$. How many seconds an hour will it lose?

ANSWER ANY TWO QUESTIONS

18. (a) Two forces P and Q acting at a point have a resultant R. If Q be doubled, R is also doubled. If Q be reversed in direction only, then also R is doubled. Show that $P: Q: R=\overline{2}: \overline{3}: \overline{2}$.
(b) A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle θ to the line of greatest slope, in a vertical plane through the line of greatest slope. If the body is on the point of moving up the inclined plane, find P if the equilibrium is limiting and λ is the angle of friction.
19. (a) A particle is moving with simple harmonic motion and while moving from the mean position to one extreme position its distances at three consecutive seconds are x_{1}, x_{2}, x_{3}. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.
(b) Show that the path of a projectile is a parabola.
20. (a) Derive the differential equation to a central orbit in (u, θ) form.
(b) A particle moves in an ellipse under a force directed towards the focus. Find the law of force.

alalala

