STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2016 BRANCH III - PHYSICS SIXTH SEMESTER REG. No.

CO	UDSE .		REG. No MAJOR – CORE					
	URSE : PER : ME :	QUA	QUANTUM MECHANICS AND RELAT 30 MINS.			Y MARKS : 30		
то	BE ANSW	ERED IN T	THE QUESTI	SECTION – ON PAPER ITSE				
AN	SWER ALI	L QUESTI	ONS:			(30 x 1 = 30)		
Ι	Choose the	e Correct A	answer:					
1.	de – Broglie proposed that wave length λ associated with any moving particle of momentum P is							
	a) $h\gamma/2$	1 15	b) h/mv	c) h/w		d) hy		
2.	The wave associated with material particle is calleda) Square waveb) matter wavesc) sine waved) triangular wave							
3.	The phase a) $V_p = k/c$			ω c) V _p = c	o/k	d) $V_p = d\omega/dk$		
4.	The quantu a) – h/2m -		cal operator for b) $-\hbar^2/2m \nabla$	kinetic energy k is $c) - \hbar/2n$		d) – $\hbar/2m \nabla^2$		
5.	Since the particle is moving freely with zero potential energy, its total energy E is the kinetic energy given by a) $E = p_x/m$ b) $E = p^2x/2m$ c) $E = -p^2x/m$ d) $E = -p_x/m$							
6.	-	nechanical o ∂y		component of mor c)) - h/i		d)- ħ/i ∂/∂y		
7.	Number of nodes of particle in one dimensional box when n = 3 is a) 1 node b) 2 nodes c) 3 nodes d) 4 nodes					odes		
8.	Value of [] a) i ħ L _z	L _y , L _z] is b) iħ	Ly	c) iħ L _x	d) - it	n L _y		
9.	The value of a) 0	of [x, p _x]i	s b) – iħ	c) iħ		d) i/ ħ		
10	As the velo becomes	ocity of the l	oody approache	s velocity of light,	then the ma	ss m of the body		

a) 1 b) 0 c) ∞ d) none

11PH/MC/QR64

11. Un accelerated frames are calleda) Galilean or Inertial framesb) non- Inertial framesc) static framesd) none									
12. Galilean transformation equations are a) $z'=y'$ - vt, $y'=y$, $z'=z$, $t'=t$ c) $x'=x$ -vt, $y'=y$, $z'=z$, $t'=t$ b) $y'=x$ -vt, $y'=y$, $z'=z$, $t'=t$ d) none									
13. Mesons have a speed of a) $3.8 \times 10^7 \text{ ms}^{-1}$ b) $2.994 \times 10^8 \text{ ms}^{-1}$ c) $2.99 \times 10^7 \text{ ms}^{-1}$ d) $2.99 \times 10^6 \text{ ms}^{-1}$									
14. The four dimensional manifold which appears as a linking together of space and time is known asa) Time dilationb) world linec) Minkowski worldd) none									
15. The point of the orbit at which the planet is nearest to the sun is a) ellipseb) perihelionc) circled) none									
II Fill in the blanks:									
16. The de Broglie wave length for charged particle of charge q and accelerated through a potential difference of V volts is									
17. In Davisson and Germer's experiment, when the accelerating voltage is increased the									
length of the bump is									
18. The energy spectrum in an infinitely deep potential well is									
19. In the barrier penetration problem, transmission co-efficient T is									

20. The mass of the body in motion is given by ______.

III State whether true or false:

- 21. Particle velocity V is always less than C.
- 22. De- Broglie wave length of particle of kinetic energy is $\lambda = h/\sqrt{2mEk}$.
- 23. In wave packet, group velocity $V_{\rm g}$ will be equal to the particle velocity V.
- 24. In Davission and Germer's experiment the bump becomes most prominent in the curve for 64v electrons at $\phi = 30^0$.
- 25. Acceleration is invariant under Galilean transformation.

IV Answer briefly:

26. State the postulates of special theory of relativity.

27. What is rest mass of a particle?

28. Define proper length.

29. State Heisenberg uncertainty principle.

30. Give the operator representations of momentum.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2016 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	QUANTUM MECHANICS AND RELAT	IVITY
TIME	:	2 1/2 HOURS	MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Calculate the K.E of an electron moving with a velocity of 0.98C.
- 2. State the fundamental postulates of quantum mechanics.
- 3. Derive expression for group velocity and obtain the relation between group velocity and phase velocity.
- 4. Electrons are accelerated through 344 volts and are reflected from a crystal. The first reflection maximum occurs when glancing angle is 60° . Determine the spacing of the crystal.
- 5. Derive Schrödinger's time dependent equation.
- 6. Explain the normalization and orthogonal process of wave function. Also define the parity operator.
- 7. What is the length of the meter stick moving parallel to its length when its mass is 3/2 of its rest mass?

SECTION – C

ANSWER ANY THREE QUESTIONS:

(3 X 15 = 45)

- 8. (a) Calculate the de- Broglie wave length of an α particle accelerated through a potential difference of 2000 volts.
 - (b) Describe Davisson Germer's experiment and discuss its Importance in relation to de-Broglie's hypothesis of matter Waves.
- 9. Solve the Schrodinger's equation for particle in a one dimensional box. Calculate its values of energy and normalised wave function. Also, indicate graphically the first three normalised wave functions for such a particle.
- 10. (a) Find the commutation relation between momentum and free particle Hamiltonian.
 (b) Find the commutation relation of L² with components of orbital angular momentum.
- 11. Describe the Michelson-Morley experiment and explain the physical significance of negative results.
- 12. Deduce the formula for relativistic variations of mass with velocity. Briefly explain it's significant.
