STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2016 BRANCH III - PHYSICS SIXTH SEMESTER

REG. No.

COURSE MAJOR - CORE

PAPER NUCLEAR PHYSICS

TIME 30 MINS. MAX. MARKS: 30

SECTION - A TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL OUESTIONS:

I. **CHOOSE THE CORRECT ANSWER:**

- 1. The shape of yukawa potential is

 - a) $V_o e^{-r/v_o}$ b) $-V_o e^{-r^2/v_o^2}$
- d) $-V_o \frac{e^{-r^2/ro^2}}{r^2/ro^2}$
- 2. The nuclear energy levels were introduced by
 - a) liquid drop model

- b) shell model c) collective model d) radioactive model
- 3. The Magic numbers one
 - a) 2,8,20,28,50,82,126
- b) 2,4,8,18,32
- c) 20,200,2000 d) 3,6,9,12
- 4. Bi²¹⁰ has a half life of 5 days. The time taken for seven eights of a sample to decay is
 - a) 3.4 days
- b) 10 days
- c) 15 days
- d) 20 days
- 5. Which of the following radioactive decay emits α particles
 - a) $_{82}Pb^{214} \rightarrow _{83}Bi^{214} +$

b) $_{92}U^{238} \rightarrow _{90}Th^{234} +$

c) $_{00}Th^{234} \rightarrow _{01}Pa^{234} +$

- d) $_{01}Pa^{234} \rightarrow _{02}U^{234} +$
- 6. The decay constant of a radioactive sample is λ , the half life and mean life of the sample are respectively given by
 - a) $1/\lambda$ and $(\ln 2)/\lambda$
- b) $(\ln 2/\lambda)$ and $1/\lambda$ c) λ (ln 2) and $1/\lambda$ d) $\lambda/(\ln 2/\lambda)$ and $1/\lambda$

- 7. One dee is used in
 - a) cyclotron
- b) betatron
- c) frequency modulated cyclotron
- d) bevatron

- 8. The substance used in solid state detector is
 - a) conductor
- b) semiconductor
- c) insulator
- d) any alloy

- 9. The right energy limit in betatron is
 - a) 300 ev
- b) 300 kev
- c) 300 Mev
- d) 300 Bev

	/2/		11PH/MC/NP64
10. The fission of 92U	J ²³⁵ is caused by		
	b) β-particles	c) fast neutrons	d) slow neutrons
	ed in nuclear reactor is b) U-235	c) coolant	d) shield
	fission is energetically feasib		
a) equal to 3 b)	more than 49 c) less than o	or equal to 49 d)	more than 15
13. Which of the follo	owing are fermions? b) μ - meson c) μ and	l∏ - meson	d) electron
14. A∏ meson at rest	can decay as $\Pi^- = \mu^- + v^-$ that	n energy of μ	
a) can be anything	b) is a fixed quantity	c) is zero	d) is equal to mc ²
15. The carrier particl a) photon	e of strong interaction is b) quark	c) graviton	d) gluon
II. FILL IN THI	E BLANKS:		
16. The quantum of e	nergy of such time dependen	t vibrations is called	
17. When boron $\P^0_s B$	is bombarded by neutron, al	pha-particles are en	nitted. The resulting
nucleus is of the e	lement and has the	ne mass number	

III. STATE WHETHER TRUE OR FALSE:

19. Kinetic energy of fission neutrons

21. The nucleons are fermions, so they obey Pauli exclusion principle.

18. The high potential difference is produced by a _____.

22. X rays are diffracted by crystals much in the same way as gamma rays.

20. The elementary particles sigma hyperons strangeness number is ______.

- 23. The total relativistic energy of electron is given by $E = p^2 c^2 + m_o^2 c^4$
- 24. The equation $4 (H^t) \rightarrow_2^4 He^{++} + 2e + 26 mev$ represents fission.
- 25. Photons obey fermi Dirac statistics.

IV. ANSWER BRIEFLY:

26. Write Weizacker mass formula.

27. What do you mean by induced radioactivity?

28. Write the principle of cyclotron.

29. Define fission parameters α and μ .

30. What are baryons?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/MC/NP64

B.Sc. DEGREE EXAMINATION APRIL 2016 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR - CORE PAPER : NUCLEAR PHYSICS

TIME : $2\frac{1}{2}$ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5X 5 = 25)

- 1. Explain the Meson theory of nuclear force.
- 2. What are radioactive isotopes? Discuss some important uses.
- 3. The half life of radiocarbon C^{14} is 5700 years. In a sample the ratio of C^{14} to C^{12} has decreased to one-eight of equilibrium value. Calculate the age of the sample.
- 4. A GM tube with a cathode 4.0 cm in diameter and a wire diameter of 0.016 cm is filled with argon and alcohol to a pressure such that mean free path is 4.6x10⁻³ cm calculated the maximum radius of which secondary ions will be formed when 1.2 KV is applied to cathode.
- 5. Calculated the energy released by the fission of 1kg of U^{235} in Kilowatt hour. Assuming that on the average energy released per fission is 200 Mev and Avogadro number $N = 6.023 \times 10^{26}$ per kg atom.
- 6. Certain stars obtain part of their energy by the fusion of three α -particles to form a $_6C^{12}$ nuclear. How much energy does each such reaction evolve? The mass of helium atom is 4.00260 amu while the mass of an electron is 0.00055 amu. The mass of $_6C^{12}$ atom is 12.0000 amu by definition (1 amu = 931.5 Mev).
- 7. Give an account of symmetry and conservation laws.

SECTION C

ANSWER ANY THREE QUESTIONS:

(3X15=45)

- 8. On the basis of liquid drop model give a simple derivation of weizascker semi empirical mass formula giving arguments for each term. What important conclusions are from this formula.
- 9. Explain the (i) tunneling effect (ii) Geiger Nuttal law
- 10. Describe the construction and working of a cyclotron Discuss its energy limit and how it has been overcome in synchrocyclotron.

- 11. What is a plasma? Discuss possible thermonuclear reactions in a plasma What the conditions for maintained fusion reactions in a plasma?
- 12. What do you understand by the classification of elementary particles? why such a classification is required?