STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted from the academic year 2015-16)

SUBJECT CODE : 15MT/MC/ML24

B. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE : MAJOR CORE
PAPER : MULTIPLE INTEGRALS AND LAPLACE TRANSFORMS TIME : 3 HOURS MAX. MARKS : 100

SECTION A

Answer All Questions:

1. Evaluate ${ }_{0}^{3}{ }_{1}^{2} x y x+y d y d x$
2. Evaluate ${ }_{-\pi_{2}{ }_{2}}{ }_{0}^{2 \cos \theta} r^{2} d r d \theta$
3. Change the following integral into polar coordinates

$$
{ }_{0}^{\infty} e^{-x^{2}+y^{2}} d x d y
$$

4. Find the Jacobian of x, y with respect to r, θ if $x=r \cos \theta, y=r \sin \theta$
5. Prove that $\beta m, n=\beta n, m$
6. Find the value of $\Gamma(1)$.
7. Find $L\left[e^{-a t}\right]$
8. Find $L\left[\sin ^{2} 2 t\right]$
9. Find $\mathrm{L}^{-1}\left[\frac{1}{(s-3)^{5}}\right]$
10. Find $\mathrm{L}^{-1}\left[\frac{s}{(s+2)^{2}}\right]$

SECTION B

Answer Any Five Questions:
11. Evaluate $\quad x y d x d y$ taken over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$.
12. By changing into polar coordinates evaluate the integral

$$
\int_{0}^{2 a} x^{\overline{2 a x-x^{2}}} x^{2}+y^{2} d x d y
$$

13. Evaluate $x y z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
14. Evaluate ${ }_{0}^{1} x^{m} \log \frac{1}{x}^{n} d x$.
15. Find $L\left[t e^{-t} \sin t\right]$.
16. Find $L^{-1} \frac{1}{s+1 s^{2}+2 s+2}$.
17. Find $L^{-1} \frac{s+2}{s^{2+4 s+5^{2}}}$

SECTION C

Answer Any Two Questions:

18. (a) Change the order of integration in the integral
${ }_{0}^{a}{ }_{\frac{x^{2}}{a}}^{2 a-x} x y d x d y$ and evaluate it.
(b) Evaluate $\frac{d x d y d z}{(x+y+z+1)^{3}}$ taken over the volume bounded by the planes

$$
x=0, y=0, z=0, x+y+z=1
$$

19. (a) Find the relation between Beta and Gamma function
(b) Express $\quad{ }_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Gamma function and evaluate the integral ${ }_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.
20. (a) If $L[f(t)]=F(s)$ and if $\frac{f(t)}{t}$ has a limit as $\mathrm{t} \rightarrow 0$, then prove that $L \frac{f(t)}{t}={ }_{s}^{\infty} F(s) d s$ and hence find $L \frac{\sin a t}{t}$.
(b) Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t$ given that $y=\frac{d y}{d t}=0$ when $t=0$.
