STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted from the academic year 2015-16)SUBJECT CODE : 15MT/MC/AG25

B. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE	: MAJOR CORE
PAPER	$:$ ANALYTICAL GEOMETRY
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION A

Answer All Questions:

1. Define conic.
2. Write the conditions for the general second degree equation to represent a hyperbola and a rectangular hyperbola.
3. Define equi-conjugate diameters of an ellipse.
4. Find the equation of the hyperbola which passes through the point $(2,3)$ and has the asymptotes $4 x+3 y-7=0$ and $x-2 y-1=0$.
5. Find the equation of the plane through $(3,4,5)$ and parallel to the plane $2 x+3 y-5=0$.
6. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$.
7. Find the equation of the line joining the points $(2,1,3)$ and $(1,-2,4)$.
8. Write down the condition for a line to lie on a plane.
9. Find the centre and radius of the sphere $16 x^{2}+16 y^{2}+16 z^{2}-16 x-8 y-16 z-55=0$.
10. Define right circular cone.

SECTION B

Answer Any Five Questions:

11. Find the centre, lengths and equations of the axes of the conic $x^{2}-3 x y+y^{2}+10 x-10 y+21=0$.
12. Prove that the product of the focal distances of a point on an ellipse is equal to the square of the semi-diameters which is conjugate to the diameter through the point.
13. Obtain the equation of the plane passing through the line
$\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z-3}{3}$ and passing through the point $(4,5,1)$.
14. Find the equation of the plane containing the line of intersection of the planes $x+y+z-6=0,2 x+3 y+4 z=5$ and passing through the point $(1,1,1)$.
15. Express in symmetrical form the line $4 x+4 y-5 z-12=0,8 x+12 y-13 z-32=0$.
16. Find the equation of the sphere tangential to the plane $x-2 y-2 z=7$ at $(3,-1,-1)$ and passing through the point $(1,1,-3)$.
17. A right circular cone has its vertex at $(2,-3,5)$. Its axis passes through $(3,-2,6)$ and its semi vertical angle is 30°. Find its equation.

SECTION C

Answer Any Two Questions:

18. a) Prove that the general second degree equation represents a conic.
b) Derive the equation of rectangular hyperbola.
19. a) Find the equation of the plane passing through the points $(-1,3,2)$ and perpendicular to the planes $x+2 y+2 z=5,3 x+3 y+2 z=8$.
b) Find the shortest distance and equation to the line of shortest distance between the two given lines $\frac{x+7}{3}=\frac{y+4}{4}=\frac{z+3}{-2}$ and $\frac{x-21}{6}=\frac{y+5}{-4}=\frac{z-2}{-1}$.
20. a) Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}=5, x-2 y+2 z=5$ for a great circle. Find also its centre and radius.
b) Prove that the equation $2 x^{2}+2 y^{2}+7 z^{2}-10 y z-10 z x+2 x+2 y+26 z-17=0$ represents a cone whose vertex is $(2,2,1)$.

acalacala

