STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2015-16)

SUBJECT CODE : 15MT/AC/MP25

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH III – PHYSICS SECOND SEMESTER

COURSE: ALLIED COREPAPER: MATHEMATICS FOR PHYSICS - IITIME: 3 HOURSN

MAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS:

(10x2=20)

- 1. Evaluate $\int_{0}^{3} \int_{1}^{2} xy x + y dy dx$.
- 2. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a} dr d\theta$.
- 3. Evaluate $\int_{0}^{b} \int_{0}^{a} \overline{b^2} y^2 xy dy dx$.
- 4. Evaluate $\begin{bmatrix} a & b & c \\ 0 & 0 & 0 \end{bmatrix} x + y + z \ dxdydz.$
- 5. Find $L{sin4t}$.
- 6. Find $L^{-1} \frac{s}{s^2 a^2}$.
- 7. Define conformal mapping.
- 8. State Taylor's series.
- 9. State Legendre differential equation.
- 10. Find the value of $P_1(1)$.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- 11. Evaluate $x^2 + y^2 dxdy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$.
- 12. By changing into polar coordinates evaluate the integral $\begin{bmatrix} 2a \\ 0 \end{bmatrix}_{0}^{2ax-x^{2}}(x^{2}+y^{2})dxdy.$
- 13. Given that x + y = u, y = uv, change the variables to u, v in the integral

 $[xy \ 1 - x - y]^{\frac{1}{2}} dxdy$ taken over the area of the triangle with sides x = 0, y = 0, x + y = 1 and evaluate it.

..2

(5x8=40)

(2x20=40)

14. Find
$$L \frac{\cos 3t - \cos 2t}{t}$$
.
15. Find $L^{-1} \frac{s^2}{s^2 + 4s^2 + 9}$.
16. Discuss the mapping $w = z^2$.

17. Solve Legendre's differential equation.

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. a) By changing the order of integration evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$.

b) By transforming into polar coordinates evaluate $\frac{x^2y^2}{x^2+y^2}dxdy$ over the annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$, (b > a).

19. a) Solve, by using Laplace transform, $\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$ given that

y(0) = -2, y' = 0 = 5.

b) Find the poles of $f = \frac{z^2+4}{z^3+2z^2+2z}$ and determine the residues at the poles.

20. a) Expand $f z = \frac{z}{z-1 (z-2)}$ in a Laurent's series valid for

(i) z < 1 and (ii) 1 < z < 2.

b) Obtain the Rodrigue's formula for Legendre's polynomials.
