STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12 \& thereafter)
SUBJECT CODE : 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
 TIME : 3 HOURS
 MAX. MARKS : 100

SECTION - A
ANSWER ALL QUESTIONS.
(10X2=20)

1. Define a vector space over a field F.
2. Give an example of a subspace of the vector space $F[x]$, of all polynomials in x over the field F.
3. Define the dual space of a vector space V.
4. Give any two bases of the space R^{2} over the field R of real numbers.
5. Define the orthogonal complement W^{\perp} of a subspace W of an inner product space V.
6. Give an orthonormal basis of the inner product space R^{2} over R.
7. Define a singular linear transformation.
8. If T is identity transformation on a vector space V of dimension n, then what is the rank of T ?
9. When do you say a matrix is orthogonally diagonalizable?
10. Define similar matrices.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

$(5 \times 8=40)$
11. Let V be a vector space over a field F and $\mathbf{0}$ be the zero element of V. Prove that
(i) $\alpha 0=0$, for every $\alpha \in F$
(ii) $o v=0$, for every v in V.
(iii) $\alpha-v=-(\alpha v)$, for every $\alpha \in F, v \in V$.
(iv) If $v \neq 0$, then $\alpha v=0$ implies that $\alpha=0$.
12. If $v_{1}, v_{2}, \cdots, v_{n}$ is a basis of V over F and if independent $w_{1}, w_{2}, \cdots, w_{m}$ in V are linearly independent over F, then prove that $m \leq n$.
13. Find an orthonormal basis for the inner product space of polynomials in x of degree 2 or less over the field R of real numbers.
14. Prove that the characteristic vectors corresponding to distinct characteristic roots of $T \in A(V)$ are linearly independent in V.
15. Show that the matrix $A=\left(\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}\right)$ is not diagonalizable.
16. State and prove Schwartz inequality.
17. Prove that any orthonormal set of vectors in an inner product space are linearly independent.

SECTION - C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
18. (a) If $v_{1}, v_{2}, \ldots ., v_{n} \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_{1} v_{1}+\ldots .+\lambda_{n} v_{n}$.
(b) If $V=R^{3}$ is 3-dimensional Euclidean space and if $S=1,0,0,0,1,0,0,0,1$. Find $L(S)$.
(c) If V is a finite dimensional space over a field F and W is a subspace of V, then prove that W is also finite dimensional, $\operatorname{dim}(W) \leq \operatorname{dim}(V)$ and $\operatorname{dim}(V / W)=\operatorname{dim}(V)-\operatorname{dim}(W)$.
19. (a) Prove that any finite dimensional inner product space V has an orthonormal basis.
(b) If V is finite dimensional over F and if $S, T \in A(V)$, then prove that
(i) $r(S T) \leq r(T)$
(ii) $r(T S) \leq r(T)$
(iii) $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$
(iv) If $T \in A(V)$ and if $S \in A(V)$ is regular, then prove that $r(T)=r\left(S T S^{-1}\right)$.
20. (a) Orthogonally diagonalize the symmetric matrix $A=\left(\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right)$.
(b) Is union of two subspaces of a vector space V a subspace of V ? If the answer is yes, prove your answer. If the answer is no, then state and prove the necessary and sufficient condition(s) for union two subspaces of V to be a subspace of V.

ahalacalala

