STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR COREPAPER: VECTOR SPACES AND LINEAR TRANSFORMATIONSTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS.

- Define a vector space over a field *F*.
 Cive on ensurely of a subgroup of the vector on
- 2. Give an example of a subspace of the vector space F[x], of all polynomials in x over the field F.
- 3. Define the dual space of a vector space V.
- 4. Give any two bases of the space R^2 over the field R of real numbers.
- 5. Define the orthogonal complement W^{\perp} of a subspace W of an inner product space V.
- 6. Give an orthonormal basis of the inner product space R^2 over R.
- 7. Define a singular linear transformation.
- 8. If *T* is identity transformation on a vector space *V* of dimension *n*, then what is the rank of *T*?
- 9. When do you say a matrix is orthogonally diagonalizable?
- 10. Define similar matrices.

SECTION – B

ANSWER ANY FIVE QUESTIONS.

- 11. Let V be a vector space over a field F and $\mathbf{0}$ be the zero element of V. Prove that
 - (i) $\alpha 0 = 0$, for every $\alpha \in F$
 - (ii) ov = 0, for every v in V.
 - (iii) $\alpha \nu = -(\alpha \nu)$, for every $\alpha \in F$, $\nu \in V$.
 - (iv) If $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.
- 12. If v_1, v_2, \dots, v_n is a basis of *V* over *F* and if independent w_1, w_2, \dots, w_m in *V* are linearly independent over *F*, then prove that $m \le n$.
- 13. Find an orthonormal basis for the inner product space of polynomials in x of degree 2 or less over the field R of real numbers.
- 14. Prove that the characteristic vectors corresponding to distinct characteristic roots of $T \in A(V)$ are linearly independent in *V*.

(5X8=40)

(10X2=20)

(2X20=40)

15. Show that the matrix
$$A = \begin{pmatrix} 5 & -3 \\ 3 & -1 \end{pmatrix}$$
 is not diagonalizable.

- 16. State and prove Schwartz inequality.
- 17. Prove that any orthonormal set of vectors in an inner product space are linearly independent.

SECTION -C

ANSWER ANY TWO QUESTIONS.

- 18. (a) If $v_1, v_2, ..., v_n \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + ... + \lambda_n v_n$
 - (b) If $V = R^3$ is 3-dimensional Euclidean space and if S = 1,0,0, 0,1,0, 0,0,1. Find L(S).
 - (c) If V is a finite dimensional space over a field F and W is a subspace of V, then prove that W is also finite dimensional, $\dim(W) \le \dim(V)$ and $\dim(V/W) = \dim(V) \dim(W)$. (5+5+10)
 - 19. (a) Prove that any finite dimensional inner product space V has an orthonormal basis. (b) If V is finite dimensional over F and if S, $T \in A(V)$, then prove that
 - (i) $r(ST) \le r(T)$
 - (ii) $r(TS) \le r(T)$
 - (iii) r(ST) = r(TS) = r(T) for S regular in A(V)
 - (iv) If $T \in A(V)$ and if $S \in A(V)$ is regular, then prove that $r(T) = r(STS^{-1})$. (10+10)

20. (a) Orthogonally diagonalize the symmetric matrix $A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$.

(b) Is union of two subspaces of a vector space V a subspace of V? If the answer is yes, prove your answer. If the answer is no, then state and prove the necessary and sufficient condition(s) for union two subspaces of V to be a subspace of V. (10+10)