STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : MAJOR CORE

PAPER : SEQUENCES AND SERIES, FOURIER SERIES TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

$(10 \times 2=20)$

1. Define countable set. Give an example.
2. Define upper bound.
3. Define convergent sequence.
4. Define a bounded sequence. Give an example of a bounded sequence.
5. Define limit of a sequence.
6. Define Cauchy sequence.
7. Prove that $\sum_{n=1}^{\infty}(-1)^{n}$ diverges.
8. Define conditionally convergence of a series.
9. Define odd function.
10. Define Fourier series.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. Prove that the inverse image of the union of two sets is the union of the inverse image.
12. If $\underset{\substack { S_{n} \\ \begin{subarray}{c}{ \pm 11{ S _ { n } \\ \begin{subarray} { c } { \pm 1 1 } }\end{subarray}}{ }$ is a sequence of nonnegative numbers and if $\lim _{n \rightarrow \infty} S_{n}=L$ then prove $\mathrm{L} \geq 0$. 13. Prove that the series $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right)$ is converges.
13. If $\underset{S_{n}}{\mathbb{S}_{n+1}}$ is a Cauchy sequence of real numbers, then prove that \mathbb{S}_{n} ald $_{n \pm 1}^{\text {a }}$ is bounded. 15. Prove that the series $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)$ is divergent.
14. Prove that a non-decreasing sequence which is not bounded above diverges to infinity.
15. Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π to be valid in $(0,2 \pi)$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

$(2 \times 20=40)$
18. a) If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$. are countable sets then prove that $\bigcup_{n=1}^{\infty} A_{n}$ is countable.
b) Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is convergent.
c) If $\lim _{n \rightarrow \infty} S_{n}=L$ and $\lim _{n \rightarrow \infty} S_{n}=M$ then prove that $\mathrm{L}=\mathrm{M}$.
19. a) If $\underset{\epsilon_{n}}{\text { D }}$, it1 then prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
b) State and prove the root test for absolute convergence of an infinite series.
20. a) Find the Fourier series for $f(x)= \begin{cases}1+x & 0<\mathrm{x}<\pi \\ -1+x & -\pi<\mathrm{x}<0\end{cases}$
b) Find cosine series for $f(x)=\left\{\begin{array}{ll}x & 0<\mathrm{x}<\frac{\pi}{2} \\ \pi-x & \frac{\pi}{2}<\mathrm{x}<\pi\end{array}\right.$.

