STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: SEQUENCES AND SERIES, FOURIER SERIESTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

1. Define countable set. Give an example.

2. Define upper bound.

3. Define convergent sequence.

4. Define a bounded sequence. Give an example of a bounded sequence.

5. Define limit of a sequence.

6. Define Cauchy sequence.

7. Prove that $\sum_{n=1}^{\infty} (-1)^n$ diverges.

8. Define conditionally convergence of a series.

9. Define odd function.

10. Define Fourier series.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

11. Prove that the inverse image of the union of two sets is the union of the inverse image.

12. If $\mathfrak{A}_{n} \overset{\mathfrak{A}}{}_{\mathfrak{p}+1}$ is a sequence of nonnegative numbers and if $\lim_{n \to \infty} S_n = L$ then prove $L \ge 0$.

13. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^2}\right)$ is converges.

14. If $\mathfrak{A}_n \overset{\mathfrak{A}}{\underset{n\neq 1}{\mathfrak{s}}}$ is a Cauchy sequence of real numbers, then prove that $\mathfrak{A}_n \overset{\mathfrak{A}}{\underset{n\neq 1}{\mathfrak{s}}}$ is bounded. 15. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.

16. Prove that a non-decreasing sequence which is not bounded above diverges to infinity.

17. Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series with period 2π to be valid in $(0, 2\pi)$.

SECTION – C

ANSWER ANY TWO QUESTIONS:

(2×20=40)

- 18. a) If A₁, A₂,.... are countable sets then prove that $\bigcup_{n=1}^{\infty} A_n$ is countable.
 - b) Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent. c) If $\lim_{n \to \infty} S_n = L$ and $\lim_{n \to \infty} S_n = M$ then prove that L = M.
- 19. a) If $a_n \stackrel{a}{}_{n=1}^{1}$ is a non-increasing sequence of positive numbers and if $\sum_{n=1}^{\infty} 2^n a_{2^n}$ converges

then prove that $\sum_{n=1}^{\infty} a_n$ converges.

b) State and prove the root test for absolute convergence of an infinite series.

20. a) Find the Fourier series for $f(x) = \begin{cases} 1+x & 0 < x < \pi \\ -1+x & -\pi < x < 0 \end{cases}$ b) Find cosine series for $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} < x < \pi \end{cases}$