STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12& thereafter)

SUBJECT CODE : 11MT/MC/MS64

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	: MAJOR CORE
PAPER	: MATHEMATICAL STATISTICS
TIME	: 3 HOURS

MAX. MARKS: 100

SECTION-A

ANSWER ALL QUESTIONS:

 $10 \ge 2 = 20$

5 X 8 = 40

- 1. Define chisquare distribution.
- 2. Define F distribution.
- 3. Distinguish between parameter and statistic.
- 4. What is critical region?
- 5. State the central limit theorem.
- 6. Define an estimator.
- 7. Define a likelihood function.
- 8. What do you mean by Confidence interval and confidence limits?
- 9. What is level of significance?
- 10. Define null hypothesis and alternative hypothesis.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

11. Show that distribution of the quotient of two independent chi square variables is a beta distribution of second kind.

- 12. Show that $z = \frac{\chi^2 n}{\sqrt{2n}}$ is a standard normal variate.
- 13. Find the mean and standard deviation of \bar{x}
- 14. Show that sample mean is a consistent estimator of population mean and sample variance is a consistent estimator of population variance.
- 15. Find the maximum likelihood estimate for λ of Poisson distribution on the basis of sample of size n. Find its variance.

- 16. Obtain 100(1- α)% confidence interval for the variance of the normal population when μ is known.
- 17. An IQ test was given to 5 people before and after they were trained. Test whether there is any change in IQ after the training program at 1% level of significance.

IQ before	110	120	123	132	125
IQ after	120	118	125	136	121

SECTION-C

ANSWER ANY TWOQUESTIONS:

2 X20 = 40

- Derive the distribution of t distribution with n degrees of freedom. Show that the limiting form of t – distribution tends to normal distribution.
- 19. (a) State and prove Cramer-Rao inequality.
- (b) State and prove Rao-Blackwell theorem.
- 20. (a)Test whether the two samples have the same variance at 5% level of significance.

Χ	66	67	75	76	82	84	88	90	92		
Y	64	66	74	78	82	85	87	92	93	95	97

(b) Examine whether the nature of area is related to voting preference in an election at 5% level of significance for which the data is tabulated below.

Nature of	Candidate				
area	Α	В	Total		
Rural	620	380	1000		
Urban	550	450	1000		
Total	1170	830	2000		
