SUBJECT CODE : 11MT/MC/MS64

B. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE : MAJOR CORE
PAPER : MATHEMATICAL STATISTICS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:
 $10 \times 2=20$

1. Define chisquare distribution.
2. Define F distribution.
3. Distinguish between parameter and statistic.
4. What is critical region?
5. State the central limit theorem.
6. Define an estimator.
7. Define a likelihood function.
8. What do you mean by Confidence interval and confidence limits?
9. What is level of significance?
10. Define null hypothesis and alternative hypothesis.

SECTION-B

ANSWER ANY FIVE QUESTIONS:
 $5 \times 8=40$

11. Show that distribution of the quotient of two independent chi square variables is a beta distribution of second kind.
12. Show that $z=\frac{\chi^{2}-n}{\sqrt{2 n}}$ is a standard normal variate.
13. Find the mean and standard deviation of \bar{x}
14. Show that sample mean is a consistent estimator of population mean and sample variance is a consistent estimator of population variance.
15. Find the maximum likelihood estimate for λ of Poisson distribution on the basis of sample of size n. Find its variance.
16. Obtain $100(1-\alpha) \%$ confidence interval for the variance of the normal population when μ is known.
17. An IQ test was given to 5 people before and after they were trained. Test whether there is any change in IQ after the training program at 1% level of significance.

IQ before	110	120	123	132	125
IQ after	120	118	125	136	121

SECTION-C

ANSWER ANY TWOQUESTIONS:

$$
2 \times 20=40
$$

18. Derive the distribution of t - distribution with n degrees of freedom. Show that the limiting form of t - distribution tends to normal distribution.
19. (a) State and prove Cramer-Rao inequality.
(b) State and prove Rao-Blackwell theorem.
20. (a)Test whether the two samples have the same variance at 5% level of significance.

\mathbf{X}	66	67	75	76	82	84	88	90	92		
\mathbf{Y}	64	66	74	78	82	85	87	92	93	95	97

(b) Examine whether the nature of area is related to voting preference in an election at 5\% level of significance for which the data is tabulated below.

Nature of area	Candidate		
	620	380	1000
Urban	550	450	1000
Total	1170	830	2000

acacacacala

