STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086

(For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/MC/LD44

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : MAJOR CORE

: LAPLACE TRANSFORMS & PARTIAL DIFFERENTIAL **PAPER**

EQUATIONS

TIME : 3 HOURS **MAX. MARKS: 100**

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Find L (coshat).
- 2. Find L ($t^2 + 2t + 3$).
- 3. Find L⁻¹ $\frac{s-3}{s-3^2+4}$.
- 4. Find L⁻¹ $\frac{s}{s+2^{-2}}$
- 5. Form a partial differential equation by eliminating arbitrary constants from $z = (x^2 + a) (y^2 + b).$
- 6. Form a partial differential equation by eliminating arbitrary functions from z = f x + iy + F (x - iy).
- 7. Find the complete integral of $p^2 + q^2 = x + y$.
- 8. Find the complete integral of z = px + qy + c $\overline{1 + p^2 + q^2}$.
- 9. Solve $r = a^2 t$.
- 10. Solve $(25D^2 40DD' + 16D'^2)z = 0$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

11. What is the Laplace transform of the function f(t) = t(0 < t < b)

$$= 2b - t (b < t < 2b)$$

11. What is the Laplace transform of the function
$$f(t) = t(0 < t < b)$$

$$= 2b - t (b < t < 2b)$$
12. Find (a) $L \frac{\sin at}{t}$ (b) $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$

13. Find (a)
$$L^{-1} = \frac{S-3}{S^2+4S+13}$$
 (b) $L^{-1} = \frac{1}{S(S^2+a^2)}$

- 14. Solve (y + z) p + (z + x) q = x + y.
- 15. Find the complete solution of $x^2p^2 + y^2q^2 = z^2$.
- 16. Solve $9(p^2z + q^2) = 4$.
- 17. Solve $(D^2 2DD' + {D'}^2) z = 12xy$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

18. Solve the simultaneous equations

$$\frac{dx}{dt} - \frac{dy}{dt} - 2x + 2y = 1 - 2t.$$

$$\frac{d^2x}{dt^2} + 2 \frac{dy}{dt} + x = 0 \text{ given } x = 0 = y, \frac{dx}{dt} = 0 \text{ when } t = 0.$$

19. (a) Solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$ given that y = 0, $\frac{dy}{dt} = 0$ when t = 0.

(b) Solve
$$(x^2 - yz) p + (y^2 - zx) q = z^2 - xy$$
. (10 + 10)

20. (a) Solve z^2 $p^2 + q^2 = x^2 + y^2$.

(b) Solve
$$(2D^2 - 5DD' + 2D'^2)z = 24(y - x)$$
 (10 + 10)

