SUBJECT CODE : 11MT/MC/GC64
B. Sc. DEGREE EXAMINATION, APRIL 2016

BRANCH I - MATHEMATICS
SIXTH SEMESTER
COURSE : MAJOR CORE
PAPER : GRAPH THEORY AND COMBINETORICS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:

$$
10 \times 2=20
$$

1. Define automorphism of a graph.
2. Find the incidence matrix for the following graph.

3. Define cut point and bridge of a graph.
4. Draw all trees with six vertices.
5. Define chromatic number of a graph. Also find the chromatic number of the following graph.

6. State five - colour theorem.
7. State the pigeonhole principle.
8. Find the number of 7 -digit and 8 -digit palindromes, under the restriction that no digit may appear more than twice.
9. Find the sequence corresponding to the ordinary generating function $2 x^{2}(1-x)^{-1}$.
10. Find the exponential generating function of $0,1,2 a, 3 a^{2}, 4 a^{3}, \ldots$.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

$5 \times 8=40$
11. Prove that any self complementary graph has $4 n$ or $4 n+1$ points.
12. Explain any four binary operations on two graphs G_{1} and G_{2} with an illustration.
13. Prove that a closed walk of odd length contains a cycle.
14. (a) Define centre of a tree.
(b) Prove that every tree has a centre consisting of either one point or two adjacent points.
15. Prove: $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n n+1(2 n+1)}{6}$.
16. Find the number of solutions in integers of the equation $a+b+c+d=17$, where $1 \leq a \leq 3,2 \leq b \leq 4,3 \leq c \leq 5,4 \leq d \leq 6$.
17. Tabulate D_{n} and T_{n} for $n=1(1) 10$.

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. (a) Prove that a graph G with at least two points is bipartite if and only if all its cycles are of even length.
(b) If G is a graph with $p \geq 3$ vertices and $\delta \geq p / 2$, Prove that G is Hamiltonian.
19. (a) Let G be a (p, q) graph. Prove that the following statements are equivalent.
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $p=q+1$.
(iv) G is acyclic and $p=q+1$.
(b) State and prove Euler's formula for connected plane graph.
20. (a) A chest contains 20 shirts, of which 4 are yellow, 7 are white and 9 are blue. At the least, how many shirts must one remove (blindfolded) to get $r=4,5,6,7,8,9$ shirts of the same colour?
(b) Define Fibonacci sequence. Using its recurrence relation, show that

$$
\begin{equation*}
f n=\frac{1}{\overline{5}}_{\frac{1+\overline{5}}{2}^{n+1}-{\frac{1-\overline{5}^{2}}{}}^{n+1} \quad \text {, for } n=0,1,2, \ldots} \tag{10+10}
\end{equation*}
$$

