STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12 & thereafter)

SUBJECT CODE : 11MT/MC/GC64

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	:	MAJOR CORE			
PAPER	:	GRAPH THEORY AND COMBINETORICS			
TIME	:	3 HOURS	MAX.	MARKS: 10	00

SECTION-A

ANSWER ALL QUESTIONS:

 $10 \ge 2 = 20$

- 1. Define automorphism of a graph.
- 2. Find the incidence matrix for the following graph.

- 3. Define cut point and bridge of a graph.
- 4. Draw all trees with six vertices.
- 5. Define chromatic number of a graph. Also find the chromatic number of the following graph.

- 6. State five colour theorem.
- 7. State the pigeonhole principle.
- 8. Find the number of 7-digit and 8-digit palindromes, under the restriction that no digit may appear more than twice.

- 9. Find the sequence corresponding to the ordinary generating function $2x^2(1-x)^{-1}$.
- 10. Find the exponential generating function of $0, 1, 2a, 3a^2, 4a^3, \ldots$

SECTION-B

ANSWER ANY FIVE QUESTIONS:

5 X 8 = 40

- 11. Prove that any self complementary graph has 4n or 4n + 1 points.
- 12. Explain any four binary operations on two graphs G_1 and G_2 with an illustration.
- 13. Prove that a closed walk of odd length contains a cycle.
- 14. (a) Define centre of a tree.

(b) Prove that every tree has a centre consisting of either one point or two adjacent points.

- 15. Prove: $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n n + 1 (2n+1)}{6}$.
- 16. Find the number of solutions in integers of the equation a + b + c + d = 17, where $1 \le a \le 3, 2 \le b \le 4, 3 \le c \le 5, 4 \le d \le 6$.
- 17. Tabulate D_n and T_n for n = 1(1)10.

SECTION-C

ANSWER ANY TWO QUESTIONS:

- 18. (a) Prove that a graph G with at least two points is bipartite if and only if all its cycles are of even length.
 - (b) If G is a graph with $p \ge 3$ vertices and $\delta \ge p/2$, Prove that G is Hamiltonian.

(10+10)

 $2 \ge 20 = 40$

- 19. (a) Let G be a (p, q) graph. Prove that the following statements are equivalent.
 - (i) G is a tree.
 - (ii) Every two points of G are joined by a unique path.
 - (iii) *G* is connected and p = q + 1.
 - (iv) *G* is acyclic and p = q + 1.
 - (b) State and prove Euler's formula for connected plane graph. (12+8)
- 20. (a) A chest contains 20 shirts, of which 4 are yellow, 7 are white and 9 are blue. At the least, how many shirts must one remove (blindfolded) to get r = 4, 5, 6, 7, 8, 9 shirts of the same colour?
 - (b) Define Fibonacci sequence. Using its recurrence relation, show that

$$f \ n = \frac{1}{5} \ \frac{1+5}{2}^{n+1} \ - \ \frac{1-5}{2}^{n+1}$$
, for $n = 0, 1, 2, ...$ (10+10)

###