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SECTION-A 

ANSWER ALL QUESTIONS:              10 X 2 = 20   

 

1. State  C – R equations in cartesion form and verify the same for . 

2. Find the constant  so that –  is harmonic. 

3. Define conformal and isogonal transformations. 

4. Find the invariant points of .
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5. State Cauchy’s theorem. 

6. Evaluate 
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 where  is the circle  taken in the positive sense. 

7. State Laruent’s theorem. 

8. Define zeroes of an analytic function and also find all zeroes of the function .
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9. Calculate the residue of .
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10. State Rouche’s theorem. 

 

                                                             SECTION-B 

ANSWER ANY FIVE QUESTIONS:           5 X 8 = 40 

 

11. Show that 22x log y  is harmonic and determine its harmonic conjugate, also 

determine the corresponding analytic function  . 

12. Show that the transformation 
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w  maps the unit circle  into a circle of 

radius unity and centre at  –  . 
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13. Discuss the mapping . 

 

14.  (i) State and prove Cauchy’s inequality. 

(ii) State and prove Liouville’s theorem. 

15. Evaluate   
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16. State and prove Argument theorem. 

17. Evaluate:   .
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               SECTION-C 

ANSWER ANY TWO QUESTIONS:              2 X20 = 40  

 

18. (a) State and prove the necessary condition for differentiability of a complex function. 

(b) If   is an analytic function and 
cos2xcosh2y

sin2x
y)u(x, , find .  

(c) Find the bilinear transformation which maps the points  and          

 into  and   respectively. 

 

19. (a) State and prove Cauchy’s Integral Formula. 

(b) Find the Laruent’s series expansion of the function 
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20. (a) State and prove Cauchy’s residue theorem. 

(b) Evaluate   
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 where  is .2|| z  

(c) Evaluate:   dx 
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