SUBJECT CODE : 11MT/MC/CA64

B. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE : MAJOR CORE
PAPER : COMPLEX ANALYSIS
TIME : 3 HOURS MAX. MARKS : 100
SECTION-A
ANSWER ALL QUESTIONS:
$10 \times 2=20$

1. State $\mathrm{C}-\mathrm{R}$ equations in cartesion form and verify the same for $f(z)=z^{3}$.
2. Find the constant ' a ' so that $u x, y=a x^{2}-y^{2}+x y$ is harmonic.
3. Define conformal and isogonal transformations.
4. Find the invariant points of $\mathrm{w}=\frac{1+\mathrm{z}}{1-\mathrm{z}}$.
5. State Cauchy's theorem.
6. Evaluate $\int_{C} \frac{z \mathrm{dz}}{\left(9-\mathrm{z}^{2}\right)(z+i)}$ where C is the circle $z=2$ taken in the positive sense.
7. State Laruent's theorem.
8. Define zeroes of an analytic function and also find all zeroes of the function $\frac{z^{3}+1}{z^{3}-1}$.
9. Calculate the residue of $\frac{z+1}{z^{2}-2 z}$.
10. State Rouche's theorem.

SECTION-B

ANSWER ANY FIVE QUESTIONS:
 $5 \times 8=40$

11. Show that $u=\log \sqrt{\mathrm{x}^{2}+y^{2}}$ is harmonic and determine its harmonic conjugate, also determine the corresponding analytic function $f(z)$.
12. Show that the transformation $\mathrm{w}=\frac{5-4 \mathrm{z}}{4 \mathrm{z}-2}$ maps the unit circle $z=1$ into a circle of radius unity and centre at $-1 / 2$.
13. Discuss the mapping $w=e^{z}$.
14. (i) State and prove Cauchy's inequality.
(ii) State and prove Liouville's theorem.
15. Evaluate $\int_{C} \frac{e^{2 z} \mathrm{dz}}{(\mathrm{z}-1)^{4}}$ where C is $|z|=\frac{3}{2}$.
16. State and prove Argument theorem.
17. Evaluate: $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \cos \theta}$.

SECTION-C

ANSWER ANY TWO QUESTIONS:

$2 \times 20=40$
18. (a) State and prove the necessary condition for differentiability of a complex function.
(b) If $f z=u+i v$ is an analytic function and $\mathrm{u}(\mathrm{x}, \mathrm{y})=\frac{\sin 2 \mathrm{x}}{\cosh 2 \mathrm{y}+\cos 2 \mathrm{x}}$, find $f(z)$.
(c) Find the bilinear transformation which maps the points $z_{1}=0, z_{2}=-i$, and $z_{3}=-1$ into $w_{1}=-1, w_{2}=1$ and $w_{3}=0$ respectively.
19. (a) State and prove Cauchy's Integral Formula.
(b) Find the Laruent's series expansion of the function $\frac{z^{2}-1}{(z+2)(z+3)}$ valid in the annular region $2<|z|<3$.
20. (a) State and prove Cauchy's residue theorem.
(b) Evaluate $\int_{C} \frac{\mathrm{dz}}{\mathrm{z}^{3}(z+4)}$ where C is $|z|=2$.
(c) Evaluate: $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$.

