STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12 & thereafter)

SUBJECT CODE : 11MT/MC/CA64

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	: MAJOR CORE
PAPER	: COMPLEX ANALYSIS
TIME	: 3 HOURS

MAX. MARKS : 100

 $10 \ge 2 = 20$

SECTION-A

ANSWER ALL QUESTIONS:

- 1. State C R equations in cartesion form and verify the same for $f(z) = z^3$.
- 2. Find the constant 'a' so that $u x, y = a x^2 y^2 + xy$ is harmonic.
- 3. Define conformal and isogonal transformations.
- 4. Find the invariant points of $w = \frac{1+z}{1-z}$.
- 5. State Cauchy's theorem.
- 6. Evaluate $\int_{C} \frac{z \, dz}{(9 z^2)(z + i)}$ where C is the circle z = 2 taken in the positive sense.
- 7. State Laruent's theorem.
- 8. Define zeroes of an analytic function and also find all zeroes of the function $\frac{z^3 + 1}{z^3 1}$.
- 9. Calculate the residue of $\frac{z+1}{z^2-2z}$.
- 10. State Rouche's theorem.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- 11. Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and determine its harmonic conjugate, also determine the corresponding analytic function f(z).
- 12. Show that the transformation $w = \frac{5-4z}{4z-2}$ maps the unit circle z = 1 into a circle of

radius unity and centre at $-\frac{1}{2}$.

5 X 8 = 40

- 13. Discuss the mapping $w = e^z$.
- 14. (i) State and prove Cauchy's inequality.
 - (ii) State and prove Liouville's theorem.

15. Evaluate
$$\int_{C} \frac{e^{2z} dz}{(z-1)^4}$$
 where *C* is $|z| = \frac{3}{2}$

16. State and prove Argument theorem.

17. Evaluate:
$$\int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}.$$

SECTION-C

ANSWER ANY TWO QUESTIONS:

2 X20 = 40

- 18. (a) State and prove the necessary condition for differentiability of a complex function.
 - (b) If f(z) = u + iv is an analytic function and $u(x, y) = \frac{\sin 2x}{\cosh 2y + \cos 2x}$, find f(z).
 - (c) Find the bilinear transformation which maps the points $z_1 = 0, z_2 = -i$, and $z_3 = -1$ into $w_1 = -1, w_2 = 1$ and $w_3 = 0$ respectively.

19. (a) State and prove Cauchy's Integral Formula.

(b) Find the Laruent's series expansion of the function $\frac{z^2 - 1}{(z+2)(z+3)}$ valid in the annular

region
$$2 < |z| < 3$$
.

20. (a) State and prove Cauchy's residue theorem.

(b) Evaluate
$$\int_{C} \frac{dz}{z^{3}(z+4)}$$
 where *C* is $|z| = 2$.
(c) Evaluate: $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10x^{2}+9} dx$.