STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/AC/OR44

B. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	: ALLIED CORE
PAPER	: OPERATIONS RESEARCH
TIME	: 3 HOURS

MAX. MARKS: 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

- 1. What are the characteristics of a good model?
- 2. Write any five applications areas of linear programming.
- 3. Define basic feasible solution.
- 4. Define the assignment problem.
- 5. Define an idle time.
- 6. What is sequencing problem?
- 7. Define optimal strategy.
- 8. Write any three characteristics of games.
- 9. Define an event.
- 10. Define dummy activity.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. Old hens can be bought at Rs.2/- each and young ones at Rs.5 each . The old hens lay 3 eggs per week and the young one lay 5 eggs per week, each egg being worth 30 paise. A hen costs Rs. 1 per week to feed. A person has only Rs.80/- to spend for hens. How many of each kind should he buy to give a profit of more than Rs. 6/- per week, assuming that he cannot house more than 20 hens. Formulate this as a L.P.P.
- 12. Apply graphical method to solve the LPP

Maximize $Z = x_1 - 2x_2$ Subject to $-x_1 + x_2 \le 1$, $6x_1 + 4x_2 \ge 24$, $0 \le x_1 \le 5$ and $2 \le x_2 \le 4$. 13. Determine basic feasible solution to the following transportation problem using – North west corner Rule.

			S	Sink			
		А	В	С	D	Е	Supply
Origin	Р	2	11	10	3	7	4
	Q	1	4	7	2	1	8
	R	3	9	4	8	12	9
Demand	l	3	3	4	5	6	

14. Find the sequence that minimizes the total elapsed time required to complete the following tasks on machines M_1 and M_2 in the order M_1 , M_2 . Also find the minimum total elapsed time.

Task	А	В	С	D	Е	F	G	Н	Ι
\mathbf{M}_1	2	5	4	9	6	8	7	5	4
M_2	6	8	7	4	3	9	3	8	11

15. Reduce the following game by dominance and find the game value:

	Player B					
		Ι	II	III	IV	
Player A	Ι	3	2	4	0	
	II	3	4	2	4	
	III	4	2	4	0	
	IV	0	4	0	8	

16. Explain the following :

(i) CPM (ii) PERT

(iii) The difference between (i) and (ii)

17. Draw the network for the project whose activities with their predecessor relationships are given below.

A,C,D can start simultaneously;

 $E > B,C \ ; \ F \ , G > D \ ; \ H \ , I > E, \ F \ ; \ J > I \ , G \ ; \ K > H \ ; \ B > A.$

/3/

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 18. (a) Write the advantages and limitations of L.P.P
 - (b) Solve the following LPP by Simplex method Minimize $Z = 8x_1 - 2x_2$ Subject to $-4x_1 + 2x_2 \le 1$ $5x_1 - 4x_2 \le 3$ and $x_1, x_2 \ge 0$.
- 19. (a) Find the initial basic feasible solution for the following transportation problem by VAM .

	Distribution centres							
	D_1 D_2 D_3 D_4							
Origin	\mathbf{S}_1	11	13	17	14	250		
	S_2	16	18	14	10	300		
	S_3	21	24	13	10	400		
Requirements		200	225	275	250			

(b) Solve the following sequencing problem giving an optimal solution if passing is not allowed.

-	-	Machines				
		\mathbf{M}_1	M_2	M_3	M_4	
Jobs	А	13	8	7	14	
	В	12	6	8	19	
	С	9	7	8	15	
	D	8	5	6	15	

20. (a) Solve the following 2x4 game graphically

Player B Player A $\begin{array}{ccc} & & & \\ 1 & 0 & 4 & -1 \\ -1 & 1 & -2 & 5 \end{array}$

(b) The following table indicates the details of a project

Activity	:	1-2	1-3	1-4	2-4	2-5	3-5	4-5
t _o	:	2	3	4	8	6	2	2
t m	:	4	4	5	9	8	3	5
t _p	:	5	6	6	11	12	4	7

(i) Draw the network

(ii) Find the critical path.

(iii) Determine the expected standard deviation of the completion time.