STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-86.

MPhil DEGREE EXAMINATION-APRIL 2016 (Effective from the academic year 2015-2016)

Subject Code: 15MT/RO/FA205

Title: FUNCTIONAL ANALYSIS

Time: 3Hrs

Core: OPTIONAL

Mark: 100

SECTION -A

Answer any five questions

5×8=40

- 1. Prove the completion of metric spaces l_p , $L_p(0,1)$ and C[0,1]
- 2. Define Haar measure. If X is a commutative Banach algebra, with an identity e, then prove that ||e-x|| < 1 implies x has an inverse.
- 3. Prove that the set of points in X for which the inverse exists is open.
- 4. Define invertible spectrum. Prove that $T: X \to X$ be a compact linear operator on a normed space X then for every $\lambda \neq 0$ the null space is finite dimensional.
- 5. Show that if the continuous n^{th} derivative $x^n(t_0)^2$ exists in a neighbourhood of a point t, then the uniform n^{th} difference derivative $x^n(t)$ also exists.
- 6. Let $T \in B(X, X)$, where X is a Banach space. Prove that if ||T|| < 1, then $(I T)^{-1}$ exists as a bounded linear operator on the whole space X and $(I T)^{-1} = \sum T^j = I + T + \cdots$ where the series on the right is convergent in the norm on B(X, X).
- 7. Prove that residual spectrum $\sigma(T)$ of a bounded self adjoint linear operator $T: H \to H$ on a complex Hilbert space H is empty.

SECTION -B

Answer any three questions

 $3 \times 20 = 60$

- 8. Prove that for a set M of a metric space X to be compact, it is necessary that there exists finite ε -net for the set M for every $\varepsilon > 0$. Also prove that if the space X is complete, then this condition is sufficient.
- 9. Show that x^{-1} exists if and only if x is in no ideal
- 10. Prove that the resolvent set $\rho(T)$ of bounded linear operator T on a complex Banach space X is open, hence the spectrum $\sigma(T)$ is closed.
- 11. Prove that the n^{th} partial derivative of the function f exists in a neighbourhood of the point T_{\circ} and if this derivative is continuous at T_{\circ} , then the n^{th} partial difference derivative also exists at T_{\circ} . Furthermore, both the derivatives coincide.
- 12. Prove that if X and Y are normed spaces. To each $T \in B(X, Y)$ corresponds a unique $T^* \in B(Y^*, X^*)$ that satisfies $\langle Tx, y^* \rangle = \langle x T^*, y^* \rangle$ for all $x \in X$ and all $y^* \in Y^*$. Moreover, T^* satisfies $\|T^*\| = \|T\|$.