STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15MT/RC/AA105

M.Phil. DEGREE EXAMINATION, JANUARY 2016
 MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : ADVANCED ALGEBRA AND ANALYSIS
TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ANY FIVE QUESTIONS:

1. Define the following terms:
(i) Partially ordered set
(ii) Totally ordered set
(iii) Lattice
(iv) Distributive lattice and
(v) modular lattice
2. Define a Artinian ring and a Noetherian ring and give examples of a ring R such that
(i) R is Noetherian but not Artinian
(ii) R is Artinian but not Noetherian
(iii) R is both Artinian and Noetherian.
3. Prove that $Z_{m} \otimes_{z} Z_{n} \cong Z_{d}$, as additive groups, where m and n are positive integers and is the $\operatorname{gcd}(m, n)$.
4. Define the following terms in a topological space X (i) Closure of a set E in X
(ii) Compact set (iii) Hausdorff space (iv) Locally compact space
5. In a topological vector space X, prove that every convex neighborhood of 0 contains a balanced convex neighborhood of 0 .
6. State and prove Holder's inequality.
7. If $f \in L^{1}$, prove that $\hat{f} \in C_{0}$ and $\|\hat{f}\|_{\infty}=\|f\|_{1}$.

SECTION B

ANSWER ANY THREE QUESTIONS:

8. State and prove the fundamental theorem of projective geometry.
9. Let R be a left Artinian ring with unity and no non-zero nilpotent ideals. Then prove that R isisomorphic to a finite direct sum of matrix rings over division rings.
10. State and prove Riesz Representation theorem.
11. If X is a topological vector space with countable local base, then prove that there is a metric d on X such that
(i) d is compatible with the topology of X
(ii) the open balls centered at 0 are balanced
(iii) d is invariant: $d(x+z, y+z)=d(x, y)$, for $x, y, z \in X$.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (i), (ii), (iii), and also(iv) all open balls are convex.
12. Prove that $L^{p}(\mu)$ is a complete metric space, for $1 \leq p \leq \infty$ and for every positive measure μ.

