## STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2015-16)
SUBJECT CODE : 15MT/PC/LA24
M. Sc. DEGREE EXAMINATION, APRIL 2016

BRANCH I - MATHEMATICS
SECOND SEMESTER

## COURSE : CORE <br> PAPER : LINEAR ALGEBRA <br> TIME : 3 HOURS

MAX. MARKS : 100
Section-A
Answer ALL the questions

1. How do you make an abelian group a module over the ring of integers?
2. If $S$ and $T$ are nilpotent linear transformations and if $S T=T S$, prove that $S T$ is a nilpotent transformation.
3. Define the companion matrix of the polynomial $f(x)=\gamma_{0}+\gamma_{1} x+\cdots+\gamma_{r-1} x^{r-1}+x^{r}$.
4. Prove that similar matrices have the same characteristic polynomial.
5. Define a unitary matrix and give an example.

## Section-B <br> Answer any FIVE questions

6. If $A$ and $B$ are submodules of an $R$-module $M$, prove that
(i) $A \cap B$ is a submodule of $M$
(ii) $A+B=\{a+b \mid a \in A, b \in B\}$ is a submodule of $M$
(iii) Is $A \cup B$ a submoduleof?Justify your answer.
7. If $V$ is a vector space of dimension $n$ and if $T \in A(V)$ has all its characteristic roots in $F$, prove that $T$ satisfies a polynomial of degree $n$ over $F$.
8. Suppose that $T$ is $\operatorname{in} A_{F}(V)$, has $p(x)=\gamma_{0}+\gamma_{1} x+\cdots+\gamma_{r-1} x^{r-1}+x^{r}$ as the minimal polynomial over $F$. Suppose, further that $V$ as $F[x]$-module is cyclic. Then prove that there is a basis of Vover $F$ such that the matrix of $T$ in this basis is $\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\gamma_{0} & -\gamma_{1} & . & . & -\gamma_{r-1}\end{array}\right]$.
9. Prove that the characteristic and minimal polynomials of a linear transformation $T$ have the same roots except for multiplicities.
10. Prove that every self adjoint operator on a finite dimensional inner product space has a nonzero characteristic vector.
11. Suppose that $V=V_{1} \oplus V_{2}$, where $V_{1}$ and $V_{2}$ are subspaces of $V$ invariant under $T$. Let $T_{1}$ and $T_{2}$ be the linear transformation induced by $T$ on $V_{1}$ and $V_{2}$, respectively. If the minimal polynomial of $\mathrm{T}_{1}$ over F is $p_{1}(x)$ while that of $\mathrm{T}_{2}$ is $p_{2}(x)$, then prove that the minimal polynomial for T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.
12. Let $V$ be a finite dimensional inner product space. If $T$ and $U$ are linear operators on $V$ then prove the following.
(i) $(T+U)^{*}=T^{*}+U^{*}$
(ii) $(T U)^{*}=U^{*} T^{*}$
(iii) $\left(T^{*}\right)^{*}=T$.

## Section-C <br> Answer any THREE questions

$(3 \times 20=60)$
13. Prove that any finitely generated module over a Euclidean ring is the direct sum of a finite number of cyclic submodules.
14. If $T \in A_{F}(V)$ is nilpotent, of index of nilpotent $n_{1}$, then prove that there is a basis
of $V$ in which the matrix of $T$ has the form $\left[\begin{array}{cccc}M_{n} & 0 & \cdots & 0 \\ 0 & M_{n_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M_{n_{r}}\end{array}\right]$
where $n_{1} \geq n_{2} \geq \cdots \geq n_{r}$ and where $n_{1}+n_{2}+\cdots+n_{r}=\operatorname{dim}_{F}(V)$.
15. Prove that two elements $S$ and $T$ in $A_{F}(V)$ are similar in $A_{F}(V)$ if and only if they have the same elementary divisors.
16. Let $V$ be a finite dimensional vector space over the field $F$ and let $T$ be a linear operator on $V$. Then prove that
(i) $T$ is triangulable if and only if the minimal polynomial for $T$ is a product of linear polynomials over $F$.
(ii) $T$ is diagonalizable if and only if the minimal polynomial for $T$ has the form $p(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{k}\right)$, where $c_{1}, c_{2}, \cdots, c_{k}$ are distinct elements of $F$.
17. (a) Let $V$ and $W$ be finite dimensional inner product spaces over the same field, having same dimension. If $T$ is a linear transformation of $V$ into $W$, then prove that the following are equivalent.
(i) $T$ preserves inner product.
(ii) $T$ is an inner product space isomorphism.
(iii) $T$ carries every orthonormal basis for $V$ onto an orthonormal basis for $W$.
(iv) $T$ carries some orthonormal basis for $V$ onto an orthonormal basis for $W$.
(b) Let $V$ be a complex vector space and $f$ be a form on $V$ such that $f(\alpha, \alpha)$ is real for every $\alpha$. Then prove that $f$ is Hermitian.

