STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted from the academic year 2015-16)

SUBJECT CODE: 15MT/PC/LA24

M. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : CORE

PAPER : LINEAR ALGEBRA

TIME : 3 HOURS MAX. MARKS : 100

Section-A

Answer ALL the questions (5x2=10)

1. How do you make an abelian group a module over the ring of integers?

- 2. If S and T are nilpotent linear transformations and if ST = TS, prove that ST is a nilpotent transformation.
- 3. Define the companion matrix of the polynomial $f(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{r-1} x^{r-1} + x^r$.
- 4. Prove that similar matrices have the same characteristic polynomial.
- 5. Define a unitary matrix and give an example.

Section-B Answer any FIVE questions

(5x6=30)

- 6. If A and B are submodules of an R-module M, prove that
 - (i) $A \cap B$ is a submodule of M
 - (ii) $A + B = \{a + b \mid a \in A, b \in B\}$ is a submodule of M
 - (iii) Is $A \cup B$ a submodule of? Justify your answer.
- 7. If V is a vector space of dimension n and if $T \in A(V)$ has all its characteristic roots in F, prove that T satisfies a polynomial of degree n over F.
- 8. Suppose that T is $\operatorname{in} A_F(V)$, has $p(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{r-1} x^{r-1} + x^r$ as the minimal polynomial over F. Suppose, further that V as F[x]-module is cyclic. Then prove that there is a basis of V over F such that the matrix of T in this basis is

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\gamma_0 & -\gamma_1 & \cdot & \cdot & -\gamma_{r-1} \end{bmatrix}.$$

- 9. Prove that the characteristic and minimal polynomials of a linear transformation T have the same roots except for multiplicities.
- 10. Prove that every self adjoint operator on a finite dimensional inner product space has a nonzero characteristic vector.

- 11. Suppose that $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T. Let T_1 and T_2 be the linear transformation induced by T on V_1 and V_2 , respectively. If the minimal polynomial of T_1 over F is $p_1(x)$ while that of T_2 is $p_2(x)$, then prove that the minimal polynomial for T over F is the least common multiple of $p_1(x)$ and $p_2(x)$.
- 12. Let V be a finite dimensional inner product space. If T and U are linear operators on V then prove the following.

(i)
$$(T + U)^* = T^* + U^*$$

(ii) $(TU)^* = U^*T^*$

(iii) $(T^*)^* = T$.

Section-C Answer any THREE questions

(3x20=60)

- 13. Prove that any finitely generated module over a Euclidean ring is the direct sum of a finite number of cyclic submodules.
- 14. If $T \in A_{F}(V)$ is nilpotent, of index of nilpotent n_{1} , then prove that there is a basis

of *V* in which the matrix of *T* has the form $\begin{bmatrix} M_n & 0 & \cdots & 0 \\ 0 & M_{n_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M_{n_r} \end{bmatrix}$

where $n_1 \ge n_2 \ge \cdots \ge n_r$ and where $n_1 + n_2 + \cdots + n_r = \dim_F(V)$.

- 15. Prove that two elements S and T in $A_F(V)$ are similar in $A_F(V)$ if and only if they have the same elementary divisors.
- 16. Let *V* be a finite dimensional vector space over the field *F* and let *T* be a linear operator on *V*. Then prove that
- (i) T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
- (ii) *T* is diagonalizable if and only if the minimal polynomial for *T* has the form $p(x)=(x-c_1)(x-c_2)\cdots(x-c_k)$, where c_1,c_2,\cdots,c_k are distinct elements of *F*.

(10+10)

- 17. (a) Let *V* and *W* be finite dimensional inner product spaces over the same field, having same dimension. If *T* is a linear transformation of *V* into *W*, then prove that the following are equivalent.
 - (i) Tpreserves inner product.
 - (ii) T is an inner product space isomorphism.
 - (iii) T carries every orthonormal basis for V onto an orthonormal basis for W.
 - (iv) T carries some orthonormal basis for V onto an orthonormal basis for W.
 - (b) Let V be a complex vector space and f be a form on V such that $f(\alpha, \alpha)$ is real for every α . Then prove that f is Hermitian. (12+8)