STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12\& thereafter)

SUBJECT CODE: 11MT/PC/PD44

M. Sc. DEGREE EXAMINATION, APRIL 2016
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE : CORE
 PAPER : PARTIAL DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Formulate the partial differential equation by eliminating the arbitrary function f from $z=x+y+f(x y)$.
2. Show that the partial differential equation $(n-1)^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2 n} \frac{\partial^{2} z}{\partial y^{2}}=n y^{2 n-1} \frac{\partial z}{\partial y}$ is of hyperbolic type.
3. Write Laplace equation in spherical coordinates.
4. State Neumann condition and insulated boundary condition.
5. What are the assumptions made in derivation of one-dimensional wave equation?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Find the equation of the integral surface of the differential equation.
$2 y(z-3) p+(2 x-z) q=y(2 x-3)$, which passes through the circle.
$z=0, x^{2}+y^{2}=2 x$.
7. Show that the equations $x p=y q, z(x p+y q)=2 x y$ are compatible.
8. If $z=f\left(x^{2}-y\right)+g\left(x^{2}+y\right)$, where f and g are arbitrary functions, then prove that $\frac{\partial^{2} z}{\partial x^{2}}-\frac{1}{x} \frac{\partial z}{\partial x}=4 x^{2} \frac{\partial^{2} z}{\partial y^{2}}$.
9. Derive Poisson equation.
10. Find various possible solutions of the one-dimensional heat conduction equation

$$
\frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}} .
$$

11. Derive Telephone equation.
12. Find D'Alebert's solution of one-dimensional wave equation.

SECTION - C

ANSWER ANY THREE QUESTIONS:

13. (a) Find the general solution of $z(x p-y q)=y^{2}-x^{2}$.
(b) Determine the characteristics of the equation $z=p^{2}-q^{2}$ and find the integral surfacewhich passes through the parabola $4 z+x^{2}=0$ and $y=0$.
14. (a) Reduce the partial differential equation $y^{2} \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{y^{2}}{x} \frac{\partial z}{\partial x}+\frac{x^{2}}{y} \frac{\partial z}{\partial y}$ tocanonical form and hence solve it.
(b) If $\alpha_{r} D+\beta_{r} D^{\prime}+\gamma_{r}$ is a factor of $F\left(D, D^{\prime}\right)$ and $\varphi_{r}(\xi)$ is an arbitrary function of the singlevariable ξ, then show that $u_{r}=\exp \left(\frac{-\gamma_{r} x}{\alpha_{r}}\right) \varphi_{r}\left(\beta x-\alpha_{r} y\right)$ for $\alpha_{r} \neq 0$.
15. (a)Find the solution of the Laplace equation $\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.
(b) State the interior Neumann problem for a circle and find its solution.
16. (a) Find the solution of the one-dimensional diffusion equation satisfying the following conditions: (i) T is bounded as $t \rightarrow \infty$ (ii) $\left.\frac{\partial T}{\partial x}\right|_{\mathrm{x}=0}=0$, for all t (iii) $\left.\frac{\partial T}{\partial x}\right|_{\mathrm{x}=\mathrm{a}}=0$,
for allt (iv) $T(x, 0)=x(a-x), 0<x<a$.
(b) Find the temperature in a sphere of radius ' a ' when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$.
17. (a) Obtain the solution of the Radio equation $\frac{\partial^{2} v}{\partial x^{2}}=L C \frac{\partial^{2} v}{\partial t^{2}}$ appropriate to the case when a periodic e.m.f. $\mathrm{V}_{0} \operatorname{cospt}$ is applied at the end $x=0$ of the line.
(b) Reduce the one-dimensional wave equation $u_{t t}=c^{2} u_{x x}$ to canonical form and find its solution.
