STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12& thereafter)

SUBJECT CODE: 11MT/PC/PD44

M. Sc. DEGREE EXAMINATION, APRIL 2016 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : CORE

PAPER : PARTIAL DIFFERENTIAL EQUATIONS

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Formulate the partial differential equation by eliminating the arbitrary function f from z = x + y + f(xy).
- 2. Show that the partial differential equation $(n-1)^2 \frac{\partial^2 z}{\partial x^2} y^{2n} \frac{\partial^2 z}{\partial y^2} = ny^{2n-1} \frac{\partial z}{\partial y}$ is of hyperbolic type.
- 3. Write Laplace equation in spherical coordinates.
- 4. State Neumann condition and insulated boundary condition.
- 5. What are the assumptions made in derivation of one-dimensional wave equation?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

6. Find the equation of the integral surface of the differential equation.

$$2y(z-3)p + (2x-z)q = y(2x-3)$$
, which passes through the circle.
 $z = 0$, $x^2 + y^2 = 2x$.

- 7. Show that the equations xp = yq, z(xp + yq) = 2xy are compatible.
- 8. If $z = f(x^2 y) + g(x^2 + y)$, where f and g are arbitrary functions, then prove that $\frac{\partial^2 z}{\partial x^2} \frac{1}{x} \frac{\partial z}{\partial x} = 4x^2 \frac{\partial^2 z}{\partial y^2}$
- 9. Derive Poisson equation.
- 10. Find various possible solutions of the one-dimensional heat conduction equation

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}.$$

- 11. Derive Telephone equation.
- 12. Find D'Alebert's solution of one-dimensional wave equation.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. (a) Find the general solution of $z(xp yq) = y^2 x^2$.
 - (b) Determine the characteristics of the equation $z = p^2 q^2$ and find the integral surfacewhich passes through the parabola $4z + x^2 = 0$ and y = 0.
- 14. (a) Reduce the partial differential equation $y^2 \frac{\partial^2 z}{\partial x^2} 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$ to canonical form and hence solve it.
- (b) If $\alpha_r D + \beta_r D' + \gamma_r$ is a factor of F(D,D') and $\varphi_r(\xi)$ is an arbitrary function of the singlevariable ξ , then show that $u_r = exp\left(\frac{-\gamma_r x}{\alpha_r}\right)\varphi_r(\beta x \alpha_r y)$ for $\alpha_r \neq 0$.
 - 15. (a) Find the solution of the Laplace equation $\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
 - (b) State the interior Neumann problem for a circle and find its solution.
 - 16. (a) Find the solution of the one-dimensional diffusion equation satisfying the following conditions: (i) T is bounded as $t \to \infty$ (ii) $\frac{\partial T}{\partial x}|_{x=0} = 0$, for all t (iii) $\frac{\partial T}{\partial x}|_{x=a} = 0$, for all t (iv) T(x,0) = x(a-x), 0 < x < a.
 - (b) Find the temperature in a sphere of radius 'a' when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$.
 - 17. (a) Obtain the solution of the Radio equation $\frac{\partial^2 v}{\partial x^2} = LC \frac{\partial^2 v}{\partial t^2}$ appropriate to the case when a periodic e.m.f. V₀cospt is applied at the end x = 0 of the line.
 - (b) Reduce the one-dimensional wave equation $u_{tt}=c^2u_{xx}$ to canonical form and find its solution.