<u>STELLA MARIS COLLEGE (AUTONOMOUS)</u> <u>CHENNAI-86.</u> (For the academic year 2011-2012 and there after)

Subject code: 11MT/PC/DG44 <u>M.Sc DEGREE EXAMINATION</u> Branch-I Mathematics Fourth Semester

CORE: MAJOR CORE 100PAPER:DIFFERENTIAL GEOMETRY HRS

MARKS: TIME: 3

<u>SECTION-A</u> <u>Answer all the questions</u>(5X2=10marks)

- 1. Define regular point.
- 2. Define diffeomorphism maps.
- 3. Write the first fundamental form of σ .
- 4. Define principal curvature.
- 5. Define Gaussian and Mean curvature.

<u>SECTION-B</u> <u>Answer any five questions</u>(5X6=30marks)

- 6. Prove that any reparametrisation of a regular curve is regular.
- If u and ũ be open subsets of R² and let σ: u → R³ is a regular surface patch and if Ø: ũ → u be a bijective smooth map with smooth inverse map Ø⁻¹: u → ũ, then prove that σ̃ = σ□Ø: ũ → R³ is a regular surface patch.
- 8. Show that $\|\sigma_u X \sigma_v\| = (EG F^2)^{\frac{1}{2}}$
- 9. State and prove Meusnier's theorem.
- 10. If $\sigma(u, v)$ is a surface patch with first and second fundamental forms $Edu^2 + 2Fdudv + Gdv^2$ and $Ldu^2 + 2Mdudv + Ndv^2$ respectively, then show that $K = \frac{LN - M^2}{EG - F^2}$.
- 11. Find κ for the circular helix $(a \cos \theta, a \sin \theta, b\theta)$.

12. Show that any tangent developable is isometric to a plane.

13. If $\gamma(t)$ is a regular curve in R^3 with nowhere vanishing curvature and if $\frac{d}{dt}$ is

denoted by a dot, then prove that $\tau = \frac{(\dot{\vartheta} X \ddot{\vartheta}) \cdot \ddot{\gamma}}{\|\dot{\gamma} X \ddot{\gamma}\|^2}$

- 14. If $\sigma: u \to R^3$ be a patch of a surface *S* containing a point *P* of *S*, and if (u, v) be coordinates in *u*, show that the tangent space to *S* at *P* is the vector subspace of R^3 spanned by the vectors σ_u and σ_v .
- 15. Prove that the area of a surface patch is unchanged by reparametrisation.
- 16. State and prove Euler's theorem.
- 17. With the usual notation prove that

$$e'_{u}e''_{v} - e''_{u}e'_{v} = \lambda'\mu'' - \lambda''\mu'$$

= $\alpha_{v} - \beta_{u}$
= $\frac{LN - M^{2}}{(EG - F^{2})^{\frac{1}{2}}}$