STELLA MARIS COLLEGE (AUTONOMOUS)
 CHENNAI-86.

(For the academic year 2011-2012 and there after)
Subject code: 11MT/PC/DG44
M.Sc DEGREE EXAMINATION

Branch-I Mathematics
Fourth Semester
CORE: MAJOR CORE
100PAPER:DIFFERENTIAL GEOMETRY
MARKS:
TIME: 3
HRS
$\underline{\text { SECTION-A }}$
Answer all the questions $(5 \mathrm{X} 2=10 \mathrm{marks})$

1. Define regular point.
2. Define diffeomorphism maps.
3. Write the first fundamental form of σ.
4. Define principal curvature.
5. Define Gaussian and Mean curvature.

SECTION-B

Answer any five questions (5X6=30marks)
6. Prove that any reparametrisation of a regular curve is regular.
7. If u and \tilde{u} be open subsets of R^{2} and let $\sigma: u \rightarrow R^{3}$ is a regular surface patch and if $\emptyset: \tilde{u} \rightarrow u$ be a bijective smooth map with smooth inverse map $\emptyset^{-1}: u \rightarrow \tilde{u}$, then prove that $\tilde{\sigma}=\sigma^{\circ} \emptyset: \tilde{u} \rightarrow R^{3}$ is a regular surface patch.
8. Show that $\left\|\sigma_{u} X \sigma_{v}\right\|=\left(E G-F^{2}\right)^{\frac{1}{2}}$
9. State and prove Meusnier's theorem.
10. If $\sigma(u, v)$ is a surface patch with first and second fundamental forms $E d u^{2}+2 F d u d v+G d v^{2}$ and $L d u^{2}+2 M d u d v+N d v^{2}$ respectively, then show that $K=\frac{L N-M^{2}}{E G-F^{2}}$.
11. Find κ for the circular helix $(a \cos \theta, a \sin \theta, b \theta)$.
12. Show that any tangent developable is isometric to a plane.

SECTION-C

Answer any three questions ($3 \mathrm{X} 20=60 \mathrm{marks}$)
13.If $\gamma(t)$ is a regular curve in R^{3} with nowhere vanishing curvature and if $\frac{d}{d t}$ is denoted by a dot, then prove that $\tau=\frac{(\dot{\dot{\vartheta}} \times \ddot{\vartheta}) \cdot \dddot{\gamma}}{\|\dot{\gamma} X \ddot{\dot{\gamma}}\|^{2}}$
14.If $\sigma: u \rightarrow R^{3}$ be a patch of a surface S containing a point P of S, and if (u, v) be coordinates in u, show that the tangent space to S at P is the vector subspace of R^{3} spanned by the vectors σ_{u} and σ_{v}.
15. Prove that the area of a surface patch is unchanged by reparametrisation.
16.State and prove Euler's theorem.
17. With the usual notation prove that

$$
\begin{gathered}
e_{u}^{\prime} e_{v}^{\prime \prime}-e_{u}^{\prime \prime} e_{v}^{\prime}=\lambda^{\prime} \mu^{\prime \prime}-\lambda^{\prime \prime} \mu^{\prime} \\
=\alpha_{v}-\beta_{u} \\
=\frac{L N-M^{2}}{\left(E G-F^{2}\right)^{\frac{1}{2}}}
\end{gathered}
$$

