STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted during the academic year 2004–05 & thereafter)

SUBJECT CODE: EC/PE/MM24

M. A. DEGREE EXAMINATION, APRIL 2008 BRANCH III – ECONOMICS SECOND SEMESTER

COURSE : ELECTIVES

PAPER : MATHEMATICAL METHODS - II

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

1. a) Distinguish between column matrix and row vector.

b) Given
$$A = \begin{bmatrix} 7 & 10 & 14 \\ 9 & 2 & 6 \\ 1 & 3 & 7 \end{bmatrix}$$
 $B = \begin{bmatrix} 5 & 12 \\ 20 & 4 \end{bmatrix}$ $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Show that (i) multiplication by an identity matrix leaves the original matrix unchanged

- (ii) multiplication by a null matrix produces a null matrix.
- (iii) addition or subtraction of a null matrix leaves the original matrix unchanged.
- 2. a) Define Idempotent matrix.

b) Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 3 & 4 & -2 \\ 2 & 6 & 8 & -4 \\ 3 & 0 & 3 & 3 \end{bmatrix}$$

3. a) What is the Trace of a matrix

b) Prove that
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$$

4. Given
$$A = \begin{bmatrix} 6 & 6 \\ 6 & -3 \end{bmatrix}$$

Find a) the characteristic roots

b) the characteristic vectors.

- 5. For the data given below, determine
 - a) the market price p_t in any time period
 - b) the equalibrium price p_e and
 - c) the stability of the time path

$$Q_{dt} = 180 - 0.75 p_t$$
 $Q_{st} = -30 + 0.3 p_{t-1}$ $P_0 = 220$

- 6. Explain the process of finding solution to an open Input-Output model.
- 7. Obtain dual of the following LPP

maximize:
$$f = 2x_1 + 3x_2$$

subject to: $x_1 + 3x_2 \le 12$
 $2x_1 + x_2 \ge 6$
 $x_1 + 5x_2 = 10$
and $x_1, x_2 \ge 0$.

SECTION - B

ANSWER ANY THREE QUESTIONS

 $(3 \times 20 = 60)$

- 8. a) Compute the inverse of the matrix $A = \begin{bmatrix} 4 & 1 & -5 \\ -2 & 3 & 1 \\ 3 & -1 & 4 \end{bmatrix}$
 - b) Solve the following system of equations by Cramer's Rule

$$0.4Y + 150i = 209$$
$$0.1Y - 250i = 35$$

9. Determine the total demand x for industries 1, 2 and 3, given the matrix of technical co-efficient A and the final demand vector B.

$$A = \begin{bmatrix} 0.3 & 0.4 & 0.1 \\ 0.5 & 0.2 & 0.6 \\ 0.1 & 0.3 & 0.1 \end{bmatrix} \qquad B = \begin{bmatrix} 20 \\ 10 \\ 30 \end{bmatrix}$$

- 10. a) Find the particular solution for each of the following equations
 - 1) $y_t 10y_{t-1} + 16y_{t-2} = 14$
 - 2) $y_t 6y_{t-1} + 5y_{t-2} = 12$
 - 3) $y_t 2y_{t-1} + y_{t-2} = 8$

b) In Samuelson's interaction model between the multiplier and the accelerator assume: $Y_t = C_t + I_t + G_t$

$$C_{t} = C_{0} + cY_{t-1}$$

$$I_{t} = I_{0} + w(C_{t} - C_{t-1})$$

where
$$0 < c < 1$$
, $w > 0$ and $G_t = G_0$

- i) Find the particular solution and
- ii) Find the characteristic roots for the complementary function.
- 11. Solve the following LPP by simplex method

Minimize:
$$f = 9X + 12Y + 15Z$$

Subject to
$$2X + 2Y + Z \ge 10$$

$$2X + 3Y + Z \ge 12$$

$$X + Y + 5Z \ge 14$$

$$X,Y,Z \ge 0$$
.

- 12. a) Distinguish between a game and a strategy
 - b) Write a short note on saddle point

c) Given
$$A = \begin{bmatrix} 1 & 7 & 2 \\ 6 & 2 & 7 \\ 5 & 1 & 6 \end{bmatrix}$$

- i) Find maximin and minimax
- ii) Is there a saddle point?
- iii) What is A's expected pay off?
- iv) What is B's expected pay off?
- v) What is the expected value of the game?

