STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 86 (For candidates admitted during the academic year 2004-05 \& thereafter)

SUBJECT CODE : EC/PE/MM24

M. A. DEGREE EXAMINATION, APRIL 2008
 BRANCH III - ECONOMICS
 SECOND SEMESTER

COURSE : ELECTIVES
PAPER : MATHEMATICAL METHODS - II
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ANY FIVE QUESTIONS.

1. a) Distinguish between column matrix and row vector.
b) Given $A=\left[\begin{array}{ccc}7 & 10 & 14 \\ 9 & 2 & 6 \\ 1 & 3 & 7\end{array}\right]$ $B=\left[\begin{array}{cc}5 & 12 \\ 20 & 4\end{array}\right]$
$N=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Show that (i) multiplication by an identity matrix leaves the original matrix unchanged
(ii) multiplication by a null matrix produces a null matrix.
(iii) addition or subtraction of a null matrix leaves the original matrix unchanged.
2. a) Define Idempotent matrix.
b) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 3 & 4 & -2 \\ 2 & 6 & 8 & -4 \\ 3 & 0 & 3 & 3\end{array}\right]$
3. a) What is the Trace of a matrix
b) Prove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$.
4. Given $A=\left[\begin{array}{cc}6 & 6 \\ 6 & -3\end{array}\right]$

Find a) the characteristic roots
b) the characteristic vectors.
5. For the data given below, determine
a) the market price p_{t} in any time period
b) the equalibrium price p_{e} and
c) the stability of the time path

$$
Q_{d t}=180-0.75 p_{t} \quad Q_{s t}=-30+0.3 p_{t-1} \quad P_{0}=220
$$

6. Explain the process of finding solution to an open Input-Output model.
7. Obtain dual of the following LPP
maximize: $f=2 x_{1}+3 x_{2}$
subject to: $x_{1}+3 x_{2} \leq 12$
$2 x_{1}+x_{2} \geq 6$
$x_{1}+5 x_{2}=10$
and $\quad x_{1}, x_{2} \geq 0$.

SECTION - B

ANSWER ANY THREE QUESTIONS

($\mathbf{3} \times 20=60$)
8. a) Compute the inverse of the matrix $A=\left[\begin{array}{ccc}4 & 1 & -5 \\ -2 & 3 & 1 \\ 3 & -1 & 4\end{array}\right]$
b) Solve the following system of equations by Cramer's Rule

$$
\begin{aligned}
& 0.4 Y+150 i=209 \\
& 0.1 Y-250 i=35
\end{aligned}
$$

9. Determine the total demand x for industries 1, 2 and 3, given the matrix of technical co-efficient A and the final demand vector B.

$$
A=\left[\begin{array}{lll}
0.3 & 0.4 & 0.1 \\
0.5 & 0.2 & 0.6 \\
0.1 & 0.3 & 0.1
\end{array}\right] \quad B=\left[\begin{array}{l}
20 \\
10 \\
30
\end{array}\right]
$$

10. a) Find the particular solution for each of the following equations
1) $y_{t}-10 y_{t-1}+16 y_{t-2}=14$
2) $y_{t}-6 y_{t-1}+5 y_{t-2}=12$
3) $y_{t}-2 y_{t-1}+y_{t-2}=8$
b) In Samuelson's interaction model between the multiplier and the accelerator assume: $Y_{t}=C_{t}+I_{t}+G_{t}$

$$
\begin{aligned}
& C_{t}=C_{0}+c Y_{t-1} \\
& I_{t}=I_{0}+w\left(C_{t}-C_{t-1}\right)
\end{aligned}
$$

where $0<c<1, w>0$ and $G_{t}=G_{0}$
i) Find the particular solution and
ii) Find the characteristic roots for the complementary function.
11. Solve the following LPP by simplex method

Minimize: $f=9 X+12 Y+15 Z$
Subject to $2 X+2 Y+Z \geq 10$
$2 X+3 Y+Z \geq 12$
$X+Y+5 Z \geq 14$
$X, Y, Z \geq 0$.
12. a) Distinguish between a game and a strategy
b) Write a short note on saddle point
c) Given $A=\left[\begin{array}{lll}1 & 7 & 2 \\ 6 & 2 & 7 \\ 5 & 1 & 6\end{array}\right]$
i) Find maximin and minimax
ii) Is there a saddle point?
iii) What is A's expected pay off?
iv) What is B's expected pay off?
v) What is the expected value of the game?

