STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/OS54

B.Sc. DEGREE EXAMINATION NOVEMBER 2010 BRANCH III - PHYSICS FIFTH SEMESTER

		RE	G. No	
	SE : MAJOR - CO C : OPTICS AND C : 30 MINS.	ORE O SPECTROSCOPY	MAX. MARKS: 30	
		SECTION - A		
ANSW	TO BE ANSWEREI ER ALL QUESTIONS:) IN THE QUESTION PAP	PER ITSELF $(30 \times 1 = 30)$	
I.	CHOOSE THE CORRE	ECT ANSWER:		
	$u = \frac{\sin i}{\sin r}$ is a) Snell's law of reflection	b) Snall's law of refraction	a) Total Internal reflection	
	A Thick lens has	b) Shell's law of ferraction	c) Total internal reflection	
ä	a) 2 Spherical surfaceThe focal length of a lens is 2		c) 3 Spherical surface	
	a) .05 b) .5	c) 5	d) .005 dioptre	
á	The centre of Newton's rings a) Bright	b) dark	c) both	
	A fringe is a path of constant		a) waxalanath	
	a) amplitudeIf the phase difference between		c) wavelength	
	a) $\lambda/2$	b) $\lambda/4$	c) λ/8	
	The reciprocal of focal length	, ,	c) n, o	
		b) Cardinal point	c) Magnification	
	The frequency and wavelengt			
	2	b) $v = c\lambda$	c) $v = \lambda$	
9. The focal length of telephoto lens is				
	a) $f = \frac{f_1 f_2}{f_1 + f_2 - d}$		c) $f = \frac{f_1}{f_1 + f_2}$	
	The angular dispersion in	•	A	
ä	a) $\delta = (\mu - 1)A$	b) $(\mu - 1)$	c) $(\mu - 1)^{\frac{A}{2}}$	
11.	Aberration that occur due to o	dispersion of light is		
	a) Chromatic aberration		c) spherical aberration	
	The lenses used in cameras an) C	
	a) Achromatic doublets	b) Spherical	c) Concave	
	The power of Ramsden eyepi		a) Z ara	
	a) PositiveThe condition for Bandwidth	b) Negative in Young's double slit is	c) Zero	
	a) $B = \frac{\lambda D}{d}$	b) $B = \lambda D$	c) $B = D$	
	Scattering of light with-chang	ge in frequency is called		
		b) Einstein photoelectric eff	fect c) Raman effect	

/2/ PH/MC/OS54

II.	FILL IN THE BLANKS:
16.	1 Angstrom unit =
17.	Light travels along a path having (min) path length.
18.	Dispersive power $\omega = \frac{1}{\mu - 1}$.
19.	$(a + b) \sin \theta = m\lambda$ is the diffraction condition for
20.	The specific rotatary power is given by $S = $
21.	The radius of 1 st half period zones are
22.	plano concave lens are used in Ramsden's eye piece.
23.	The difference is wavelength of 2 waves in Michelson Interferometer is
24.	Light travels in lines.
25.	asin $\theta = n\lambda$ is the condition for diffraction due to single slit.
III.	. ANSWER BRIEFLY:
26.	State Fermat's principle.
27.	What is Fresnel's biprism.
28.	What is Resolving power?
29.	State Raman effect.

xxxxxx

30. Define optical activity.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: PH/MC/OS54

B.Sc. DEGREE EXAMINATION NOVEMBER 2010 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE : MAJOR - CORE

PAPER : OPTICS AND SPECTROSCOPY

TIME : 2½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5 X 5 = 25)

- 1. Find the focal length of thick lenses.
- 2. Explain Interference in thin films.
- 3. The focal length of achromatic combination of 2 lenses in contact is 150 cm. If the dispersive powers of the materials of the two lenses are .018 and .027, calculate the focal length of two lenses.
- 4. In a Newton's ring experiment, the diameter of 10th dark ring due to wavelength 6000A° in air is 0.5 cm. Find the radius of curvature of the lens.
- 5. A parallel beam of light of wavelength 5460A° is incident at an angle of 30° on a plane transmission grating which has 6000 lines/cm. Find the highest order spectrum that can be observed.
- 6. A 200 mm long tube containing of 48 cm³ of sugar solution produces a optical rotation of 11° when placed in a Saccharimeter. If the specific rotation of sugar solution is 60°. Calculate the quantity of sugar contained in the tube in the form of solution.
- 7. From the Beer Lambert law calculate the concentration of the given chlorophyll solution, given optical activity = .8, $\varepsilon = 20,000$, length of the uv cell = 1 cm.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Explain construction and working of Huygen's eyepiece.
- 9. Determine-wavelength of monochromatic source of light by Michelson interferometer.
- 10. Explain plane diffraction grating with theory and experiment.
- 11. Determine optical activity and specific rotation of sugar solution.
- 12. Give the theory of Raman effect. Explain experimental arrangement to determine stokes and antistokes lines.