STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2008-09 \& thereafter)
SUBJECT CODE : PH/MC/MP34
B.Sc. DEGREE EXAMINATION NOVEMBER 2010

BRANCH III - PHYSICS THIRD SEMESTER

REG. No. \qquad
COURSE : MAJOR - CORE
PAPER : MATHEMATICAL PHYSICS
TIME : 30 MINS.
MAX. MARKS : 30
SECTION - A
TO BE ANSWERED IN THE QUESTION PAPER ITSELF
ANSWER ALL QUESTIONS:
($\mathbf{3 0 \times 1} \mathbf{1}=\mathbf{3 0)}$)
I CHOOSE THE CORRECT ANSWER:

1. $\operatorname{div} \operatorname{curl} \mathbf{A}$ is equal to,
a) 1
b) 0
c) $\nabla^{2} \mathbf{A}$
d) none of the above
2. A Vector is solenoidal if ,
a) $\nabla \mathbf{V}=0$
b) $\nabla \cdot \mathbf{V}=0$
c) $\nabla \mathbf{x V}=0$
d) $\nabla^{2} \mathbf{V}=0$
3. If $R=\operatorname{Sint} \mathbf{i}+\operatorname{Cost} \mathbf{j}+t \mathbf{k}$ then $|d R / d t|$ is,
a) $\sqrt{ } 2$
b) 1
c) 0
d) $1 / \sqrt{2}$
4. For irrotational motion of incompressible liquid,
a) $\nabla \mathbf{x} V=O$ and $\nabla \cdot \mathbf{V}=0$
b) $\nabla \mathbf{x} \mathbf{V} \neq \mathrm{O}$ and $\nabla \cdot \mathbf{V}=0$
c) $\nabla \mathbf{x} \mathbf{V}=\mathrm{O}$ and $\nabla \cdot \mathbf{V} \neq 0$
d) $\nabla \mathbf{x} \mathbf{V} \neq \mathrm{O}$ and $\nabla \cdot \mathbf{V} \neq 0$
5. If $\mathbf{F}=\nabla \varphi$ then,
a) $\nabla \mathbf{x} \mathbf{F}=0$
b) $\nabla \cdot \mathbf{F}=0$
c) $\nabla \varphi \times \mathbf{F}=0$
d) $\nabla \varphi \cdot \mathbf{F}=0$
6. Laplaces equation is,
a) $\nabla \cdot \nabla \varphi=0$
b) $\nabla \mathbf{x} \nabla \varphi=0$
c) $\nabla \cdot \nabla \mathbf{x} \varphi=0$
d)) $\nabla \mathbf{x} \nabla \mathbf{x} \varphi=0$
7. If $\mathbf{A}=\mathbf{i}-\mathbf{2 j} \mathbf{+} \mathbf{3} \mathbf{k}$ and $\mathbf{B}=\mathbf{3 i}+\mathbf{2 k}$, then, $\mathbf{A} . \mathbf{B}$ is equal to,
a) 2
b) 10
c) 3
d) 0
8. The angle between the two vectors $-2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$ is,
a) 0°
b) 90°
c) 180°
d) 45°
..2..

PH/MC/MP34
9. Radium decays to Radon. If N_{O} be the number of radium atom at $t=0, N_{1}$ be the number of radon atoms at a time t, λ_{1} and λ_{2} their decay constants the relation between N_{O} and N_{1} is,
a) $\mathrm{N}_{1}=\mathrm{N}_{\mathrm{O}} \mathrm{e}-{ }^{\lambda}{ }_{1}{ }^{\mathrm{t}}$
b) $\mathrm{N}_{1}=\mathrm{N}_{\mathrm{O}} \mathrm{e}^{\lambda}{ }_{1}{ }^{\mathrm{t}}$
c) $N_{1}=N_{O}-{ }_{-}{ }_{2}^{t}$
d) $\mathrm{N}_{1}=\mathrm{N}_{\mathrm{O}} \mathrm{e}^{\lambda_{2}}{ }^{\mathrm{t}}$
10. Solution of $\left(D^{2}-5 D+4 Y\right)=0$ is,
a) $Y=A e^{-x}+B e^{4 x}$
b) $Y=A e^{x}+B e^{4 x}$
c) $Y=A e^{x}+B e^{x}$
d) none of the above.
11. A simple harmonic motion is given by, $d^{2} y / d t^{2}=(-3 g / 2 a)$ Y.The time period of oscillation is given by,
a) $2 \Pi \sqrt{ } 2 a / 3 g$
b) $2 \Pi \sqrt{ } 3 \mathrm{~g} / 2 \mathrm{a}$)
c) $2 \pi(2 a / 3 \mathrm{~g})$
d) $2 \pi(3 g / 2 a)$
12. The value of $\Gamma 1 / 2$ is,
a) Π
b) $\Pi / 2$
c) $\sqrt{ } \Pi$
d) $\sqrt{ } \Pi / 2$
13. The criterion for $M d x+N d y$ to be exact is,
a) $\partial \mathrm{M} / \partial \mathrm{Y}=\partial \mathrm{N} / \partial \mathrm{X}$
b) $\partial \mathrm{M} / \partial \mathrm{X}=\partial \mathrm{N} / \partial \mathrm{Y}$
c) $d M / d Y=d N / d X$
d) $d M / d X=d N / d Y$
14. The order and degree of the differential equation $d^{2} y / d x^{2}+(d y / d x)^{3}=x$ is,
a) $2 \& 1$
b) $3 \& 2$
c) $2 \& 3$
d) $1 \& 2$
15. If $\mathbf{A}=2 \mathbf{i}+\mathbf{a} \mathbf{j}+\mathbf{k} \quad$ and $\mathbf{B}=4 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ are perpendicular vectors, The value of a is,
a) 3
b) 0
c) 5
d) -3

II FILL IN THE BLANKS.

16. The value of A. (AxC) is equal to -------------------------....
17. A vector field is conservative if and only if there exists a scalar point Function φ such that, ----------------------------------
18. The gradient of a scalar is a \qquad

19. The value of $\Gamma \mathrm{n}$ is, \qquad

III STATE WHETHER TRUE OR FALSE.

21. If $\mathbf{A} \times \mathbf{B}=0$ and if \mathbf{A} and \mathbf{B} are not zero, then \mathbf{A} is perpendicular to \mathbf{B}
22. A vector is uniquely specified by giving its divergence and curl with in a region and its normal component over the boundary
23. $0(\mathbf{A})=\mathbf{0}$
24. The value of $\Gamma-\mathrm{n}=0$.
25. $\beta(\mathrm{m}, \mathrm{n})=-\beta(\mathrm{n}, \mathrm{m})$

IV ANSWER THE FOLLOWING.

26. Define curl of a vector field.
27. State Greens theorem.
28. Can we add a velocity vector to a displacement vector? Why?
29. Define order and degree of a differential equation.
30. What is the relation between beta and gamma functions?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2010

BRANCH III - PHYSICS
THIRD SEMESTER
COURSE : MAJOR - CORE
PAPER : MATHEMATICAL PHYSICS
TIME : $2 ½$ HOURS
MAX. MARKS : 70
SECTION - B
ANSWER ANY FIVE QUESTIONS:
$(5 \times 5=25)$

1. Find the work done by a force $\mathbf{F}=-4 \mathbf{j}+2 \mathbf{k}$ acting on a particle if the particle is displaced from a point $A(2,2,2)$ to a point $B(4,4,4)$ along a straight segment AB . Comment on your results.
2. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$
3. State and prove Gauss divergence theorem.
4. \quad Prove that $\operatorname{curl} \operatorname{grad} \varphi=0$.
5. An e.m.f of 10 volts is applied to a circuit having a resistance of 10 ohms and inductance of 0.5 henry. Find the time required by the current to attain 63.2% of its final value.
6. Show that ${ }_{0} \int^{\infty}\left(x^{8}\left(1-x^{6}\right) d x /(1+x)^{24}=0\right.$
7. Solve: $d y / d x+y \cos x=\sin 2 x / 2$

SECTION - C
ANSWER ANY THREE QUESTIONS: ($15 \times 3=45$)
8. a) Find the total work done in moving a particle in a force field given by $\mathbf{F}=3 \mathrm{xy} \mathbf{i}-5 \mathrm{zj}+10 \mathrm{x} \mathbf{k}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \quad \mathrm{y}=2 \mathrm{t}^{2}, \quad \mathrm{z}=\mathrm{t}^{3}$ from $t=1$ to $t=2$.
b) If $\varphi(x, y, z)=3 x^{2} y-y^{3} z$ find the value of $\operatorname{grad} \varphi$ at the point $(1,-2,-1)$
9. a) State and prove Stokes theorem.
b) Evaluate : \iint F.nds where $\mathbf{F}=4 \mathrm{xz} \mathbf{i}-\mathrm{y} 2 \mathbf{j}+\mathrm{yz} \mathbf{k}$ and S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1$ and $\mathrm{z}=0, \mathrm{z}=1$.
10. a) A hot body cools in air at a rate proportional to the difference between the temperature of the body and that of the surrounding air. If the air is maintained at $20^{\circ} \mathrm{C}$ and the body cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 10 minutes. When will its temperature be $25^{\circ} \mathrm{C}$? What will be its temperature in 30 minutes since it started cooling from $100^{\circ} \mathrm{C}$?
b) Calculate the time required for 10% of a sample of thorium to disintegrate. assume the half life of thorium to be $1.4 \times 10{ }^{10}$ years.
11.a) A circuit is made up of a source of constant e.m.f, a self inductance, a key, a capacitor, and an ohmic resistance in series. Assuming the capacitor is uncharged before closing the key investigate theoretically how its charge varies with time after closing the key.
b) Solve : $\left(D^{2}+5 D+6\right) Y=e^{x}$
12. Obtain the series solution of Legendres differential equation.

