STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/AC/PC13

B.Sc. DEGREE EXAMINATION NOVEMBER 2010 BRANCH IV - CHEMISTRY FIRST SEMESTER

	REG. No						
COUR							
PAPE							
TIME							
	SECTION – A						
	TO BE ANSWERED IN THE QUESTION PAPER ITSELF						
I 1.	ANSWER ALL QUESTIONS: (30 x 1 = 30) CHOOSE THE CORRECT ANSWER: Moment of inertia can be expressed as						
	a) Mr^2 b) Mr^3 c) M/r^2 d) Mr						
2.	Radius of gyration can be written as a) I/M b) $\sqrt{I/M}$ c) IM d) M/I						
3.	The frequency of ultrasonic waves will be a) $f<20~H_z$ b) $f=20-20,000~H_z$ c) $f>20KH_z$ d) $f<20KH_z$						
4.	Young's modulus can be expressed in the following unit: a) Nm b) Nm ² c) m ² /N d) N/m ²						
5.	Poisson ratio can be expressed as a) N/m ² b) m c) N/m d) a mere number						
6.	If the volume of a wire remains constant during its extension, the Poisson ratio will be a) 0.5 b) zero c) unity d) infinity						
7.	For rigidity modulus, the strain will be a) an extension b) extension per unit length c) charge in volume d) an angle						
8.	Surface tension can be expressed in a) J/m ² b) N/m c) N d) m/N						
9.	A good screw driver should be made of a material with a) large Young's modulus b) large rigidity modulus c) large Bulk modulus d) small rigidity modulus						
10.	Constructive interferences occurs at points where the path difference is a) $(2n+1)^{\lambda}/_2$ b) $(2n-1)^{\lambda}/_2$ c) $n\lambda$ d) $n^{\lambda}/_2$						
11.	Fraunhoffer diffraction corresponds to a) spherical wave front b) cylindrical wave front c) elliptical wave front d) plane wave front						

			/2./		DII/AC/DC	12			
12.	According	to Brewster's	/2/ law		PH/AC/PC	13			
12.				$=\mu$	d) $tani(1/\mu)$				
13.	Let P represent polarizer and A represent analyser a) P and A work on different principles b) P and A can be interchanged c) P can work as A, but A cannot be used as P d) P is more efficient than A								
14.	For a grating at normal incidence, the angle of diffraction θ is related to wavelength λ as								
	a) $\theta\alpha\lambda$	b) $\sin \theta \alpha \lambda$	c) tanθαλ	d)	$\cos \theta \alpha \lambda$				
15.	For a gra a) <i>Nλ</i>	For a grating, the maximum order possible will be a) $N\lambda$ b) N/λ c) λ/N d) $1/N\lambda$							
II	FILL IN	THE BLANKS	S:						
16.				1 as t =					
17.	The time dilation equation can be written as $t = \dots$ The relativistic momentum is expressed as $p = \dots$								
18.					bending.				
19.	Surface te	nsion of water	con correspond	with incre	ase in temperature				
20.		Surface tension of water with increase in temperature. Plane of polarization can be defined as							
III			RUE OR FALS						
21.	_	In a compound pendulum, the point of suspension and oscillation are interchangeable.							
22.			uence of time di	ilation.					
23.			results in non-		ending.				
24.									
25.	The pheno	Stream lined motion is possible only when the fluid velocity is large. The phenomenon of double refraction is due to the two values of refractive index of the crystal.							
IV	ANSWER	R BRIEFLY:							
26.	Write a no	ote on minimum	period of oscill	ation of a	compound pendulu	m.			
27.	State the p	State the postulates of special theory of relativity.							
28.	Mention a	any two applica	tion of ultrasour	nd.					

What is a Polaroid?

Mention any two uses of Polaroid.

29.

30.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: PH/AC/PC13

B.Sc. DEGREE EXAMINATION NOVEMBER 2010 BRANCH IV - CHEMISTRY FIRST SEMESTER

COURSE : ALLIED - CORE

PAPER: PHYSICS FOR CHEMISTRY – I

TIME : 2 HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS: $(5 \times 6 = 30)$

- 1. Write down Lorentz transformation equations and explain length contraction.
- 2. Calculate the energy corresponding to a mass of 10⁻⁴kg.
- 3. Explain the principle of Peizo electric oscillator to produce ultrasonic waves.
- 4. Derive Euler's equation of continuity and explain its importance.
- 5. With theory, explain the drop weight method to determine surface tension of water.
- 6. When a grating is set at normal incidence, the first order image is observed at an angle of 20° . If the grating has 6×10^{5} lines/m, calculate the wavelength of the source.
- 7. With a diagram, explain the working of a Nicol prism.

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 8. Give the theory of compound pendulum and obtain the expression for its period of oscillation.
- 9. Determine the Young's modulus of the beam by subjecting it to non-uniform bounding.
- 10. With theory explain how rigidity modulus is determined by subjecting it to dynamic oscillation.
- 11. Explain with theory, how Newton's rings can be used to determine the wavelength of a mono chromatic source.

XXXXXX