STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2008-09)
SUBJECT CODE : MT/MC/RA54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2010
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - CORE
PAPER	: REAL ANALYSIS

TIME : 3 HOURS
MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS

1. a) Prove that $\lim _{x \rightarrow 1} \sqrt{x+3}=2$
b) Let f be a nondecreasing function on the bounded open interval (a, b). If f is bounded above on (a, b) then prove that $\lim _{x \rightarrow b^{-}} f(x)$ exists.
2. a) If f and g are real valued functions, if f is continuous at a, g is continuous at $f(a)$ then prove that $g o f$ is continuous at a.
b) Prove that the real valued function f is continuous at $a \in R^{\prime}$ if and only if whenever $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers converging to a then the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(a)$.
3. a) Prove that in an Euclidean space \mathbb{R}^{k} every cauchy sequence is convergent.
b) Prove that in any metric space (S, d) every compact subset T is complete.
4. a) Let $f: S \rightarrow T$ be a function from one metric space $\left(S, d_{S}\right)$ to another $\left(T, d_{T}\right)$. Then prove that f is continuous on S if and only if for every open set Y in T, the inverse image $f^{-1}(Y)$ is open in S .
b) Let $f: S \rightarrow T$ be a function from one metric space $\left(S, d_{S}\right)$ to another $\left(T, d_{T}\right)$. If f is continuous on a compact subset X of S then prove that $f(X)$ is a compact subset of T. Prove that in particular, $f(X)$ is closed and bounded in T.
5. a) Define homeomorphism.
b) Define connected set.
c) State and prove Bolzano's theorem.
6. a) Prove that a metric space S is connected if and only if every two valued function on S is constant.
b) State and prove the fixed point theorem.
7. a) Let f be a bounded function on $[a, b]$. Then prove that every upper sum for f is greater than or equal to every lower sum for f.
b) State and prove the chain rule.
8. a) State and prove Rolle's theorem.
b) State and prove the first fundamental theorem of calculus.
