STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008 – 09 & thereafter)

SUBJECT CODE : MT/AC/MT34

B. Com. DEGREE EXAMINATION, NOVEMBER 2010 COMMERCE THIRD SEMESTER

COURSE	:	ALLIED – CORE		
PAPER	:	MATHEMATICS FOR COMMERCE		
TIME	:	3 HOURS	MAX. MARKS :	100

SECTION – A (10 X 2 = 20)

ANSWER ALL THE QUESTIONS

- 1. If A and B are unitary matrices then prove that AB is also unitary matrix.
- 2. Prove that the matrix $\begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}$ is orthogonal.
- 3. If A and B are both symmetric then prove that AB is symmetric if and only if A and B are commutative.
- 4. Form the equation one of whose roots is $\sqrt{5} + \sqrt{3}$.
- 5. Find the sum of cubes of the roots of the equation $x^4 + 2x + 3 = 0$.
- 6. From the following data find the missing value

- 7. State the Lagrange's inverse interpolation formula.
- 8. If x = a(θ sinθ) and y = a(1 cosθ) find dy/dx.
 9. Differentiate with respect to x of (tanx)^{logx}.
- 10. Evaluate $\int \frac{\sin^{-1}x}{\sqrt{1-r^2}} dx$.

SECTION – B

(5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

- 11. Find the eigen values and eigen vectors of the matrix $\begin{pmatrix} 8 & -4 \\ 2 & 2 \end{pmatrix}$. 12. Solve $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$.
- 13. Solve the equation $6x^3 11x^2 + 6x 1 = 0$ given that the roots are in H.P.

14. Find by suitable interpolation formula the value of f(2.5) from the following data.

x :	2	3	4	5
f(x) :	14.5	16.3	17.5	18

15. Fund the cubic polynomial which takes the following values .

Х	:	0	1	2	3
у	:	1	2	1	10

16. (i) Differentiate with respect to *x*. $tan^{-1}\left(\frac{cosx}{1+sinx}\right)$.

(ii) If
$$y = \sqrt{(sinx) + \sqrt{sinx + \sqrt{sinx + \cdots}}}$$
 then find $\frac{dy}{dx}$. (5+3)

17. Evaluate (i)
$$\int x^2 \tan^{-1}x \, dx$$
 (ii) $\int x \sqrt{x^2 + a^2} \, dx$ (4+4)

SECTION – C
$$(2 \times 20 = 40)$$

ANSWER ANY TWO QUESTIONS

- 18. a) Verify Cayley Hamilton theorem for the matrix. $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$. Hence find A^{-1} . b) Express the matrix $\begin{pmatrix} 0 & 5 & -3 \\ 1 & 1 & 1 \\ 4 & 5 & 9 \end{pmatrix}$ as the sum of a symmetric and a skew-symmetric matrices. (15+5)
- 19. a) Solve the equation $2x^3 x^2 22x 24 = 0$ given that two of its roots are in the ratio 3:4.
 - b) Given that $-2 + \sqrt{-7}$ is root of the equation $x^4 + 2x^2 16x + 77 = 0$ solve it completely. (10+10)

20. a) Find
$$\frac{d}{dx}[tan^{-1}(tanh^{x}/a)]$$

b) Evaluate
$$\int \frac{x^{24}}{x^{10}+1} dx$$
 (7+13)
