STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE : MT/AC/MC34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH IV - CHEMISTRY THIRD SEMESTER

TIME	: 3 HOURS	MAX. MARKS: 100
PAPER	: MATHEMATICS FOR CHEMISTRY – I	
COURSE	: ALLIED – CORE	

$\begin{array}{l} \text{SECTION} - \text{A} & (10 \text{ X } 2 = 20) \\ \text{ANSWER ALL THE QUESTIONS} \end{array}$

- 1. State Cayley Hamilton theorem.
- 2. Show that *O* is a characteristic root of matrix if and only if the matrix is singular.
- 3. Show that similar matrices have the same determinant.
- 4. If α , β , γ , δ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, then find s_1, s_2, s_3 and s_4 .
- 5. Form the equation given that $\sqrt{2} + \sqrt{3}$ is a root of the equation.
- 6. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r$ find the value of $\sum \frac{1}{\alpha^2}$.
- 7. Prove that $cosh^2x + sinh^2x = \cosh 2x$.

8. If
$$y = x^{x^{x...to\infty}}$$
, find $\frac{dy}{dx}$.

9. If
$$u = (y - z)(z - x)(x - y)$$
, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

10. Find
$$\int \frac{1}{ax+b}$$
.

SECTION – B ANSWER ANY FIVE QUESTIONS

(5 X 8 = 40)

- 11. Obtain the characteristic roots of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.
- 12. Find the eigen values of $\begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.

13. Solve the equation $x^3 - 19x^2 + 114x - 216 = 0$ given that the roots are in G.P.

- 14. If α , β , γ are the roots of the equation $x^3 + px^2 + r = 0$ find the value of $\lambda^3 + \beta^3 + \gamma^3$.
- 15. Find y_n when $y = \frac{x^2}{(x-1)^2(x+2)}$.
- 16. If $u = tan^{-1} \frac{x^3 + y^3}{x y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
- 17. Find $\int \frac{dx}{(3+x)\sqrt{x}}$.

SECTION – C (2 X 20 = 40)ANSWER ANY TWO QUESTIONS

- 18. Diagonalize the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. 19. a) Solve the equation $x^4 4x^3 17x^2 + 24x + 36 = 0$ given that the product of
- two roots is 12.
 - b) Solve the equation $x^4 + 2x^3 5x^2 + 6x + 2 = 0$ given that $1 + \sqrt{-1}$ is a root of it.

20. a) If
$$x = \sin \theta$$
, $y = \cos p\theta$ prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$.
b) Show that $\int_0^{\pi/4} \log (1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$.
