STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2009-10)
SUBJECT CODE : MT/PC/MA14
M. Sc. DEGREE EXAMINATION, NOVEMBER 2009

BRANCH I - MATHEMATICS
FIRST SEMESTER
COURSE : MAJOR - CORE
PAPER : MODERN ALGEBRA
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$

1. Prove that the number of elements conjugate to a in G (a group) is the index of the normalizer of a in G.
2. If p is a prime and p^{m} divides $o(G), p^{m+1}$ does not divide $o(G)$ then prove that G has a subgroup of order p^{m}.
3. If A and B are finite subgroups of G. Then prove that

$$
o(A \times B)=\frac{o(A) o(B)}{o\left(A \cap\left(x B x^{-1}\right)\right)}
$$

4. Suppose that G is the internal direct product of $N_{l,}, N_{2} \ldots \ldots ., N_{k}$. Then prove that (i) for $i \neq j \quad N_{i} \cap N_{j}=\{e\}$ and (ii) $a \varepsilon N_{i}, b \varepsilon N_{j}$ implies $a b=b a$
5. State and prove Division algorithm for polynomials.
6. If L is finite extension of K and if K is finite extension of F prove that L is finite extension of F.
7. Prove that for every prime number p and every positive integer m there exists a field having p^{m} elements.

> SECTION - B ANSWER ANY THREE QUESTIONS
8. State and prove Sylow's Theorem.
9. (a). Prove that a polynomial of degree n over a field can have atmost n roots in any extension field.
(b). If F is of characteristic 0 and if a and b are algebraic over F, then prove that there exists an element c in $F(a, b)$ such that $F(a, b)=F(c)$.
10. State and prove the Fundamental Theorem of Galoi's Theory.
11. State and prove fundamental theorem on finitely generated modules.
12. State and prove Wedderburn's Theorem on finite division rings.

