STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2008-09)
SUBJECT CODE: MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2009
 BRANCH I - MATHEMATICS
 THIRD SEMESTER
 PAPER : COMPLEX ANALYSIS - PART II
 MAX. MARKS : 100

COURSE : MAJOR - CORE
TIME : 3 HOURS

SECTION - A
 $(5 \times 8=40)$
 ANSWER ANY FIVE QUESTIONS

1. Suppose that $f(z)$ is analytic in the annulus $r_{1}<|z|<r_{2}$ and continuous on the closed annulus. If $M(r)$ denotes the maximum of $|f(z)|$ for $|z|=r$, show that $M(r) \leq M\left(r_{1}\right)^{\alpha} M\left(r_{2}\right)^{1-\alpha}$, where $\alpha=\frac{\log \left(r_{2} / r\right)}{\log \left(r_{2} / r_{1}\right)}$.
2. If $\sigma=\operatorname{Re}(s)>1$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ is an ascending sequence of primes, prove that $\frac{1}{\xi((s)}=\prod_{n=1}^{\infty}\left(1-p_{n}^{-s}\right)$.
3. Prove that a locally bounded family of analytic functions has a locally bounded derivative.
4. Prove that the functions $Z=F(w)$ which map $|w|<1$ conformally onto polygons with angles $\alpha_{k} \pi(k=1,2, \ldots, n)$ are of the form $F(w)=c \int_{0}^{\infty} \prod_{k=1}^{n}\left(w-w_{k}\right)^{-\beta_{k}}+c^{\prime}$, where $\beta_{k}=1-\alpha_{k}$, the w_{k} are points on the unit circle and c, c^{\prime} are complex constants, $0<\alpha_{k}<2,-1<\beta_{k}<1$.
5. Prove that a continuous function $u(z)$ which satisfies the mean value property $U\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta$ is necessarily harmonic.
6. Prove that any two bases of the same module are connected by a unimodular transformation.
7. Prove that the zeros $a_{1}, a_{2}, \ldots, a_{n}$ and poles $b_{1}, b_{2}, \ldots, b_{n}$ of an elliptic function f satisfy $a_{1}+, a_{2}+\ldots+a_{n} \equiv b_{1}+b_{2}+\ldots+b_{n}(\bmod M), M$ being the period module of f.

SECTION - B

$(\mathbf{3} \times 20=60)$

ANSWER ANY THREE QUESTIONS

8. a) Suppose that $u(z)$ is harmonic for $|z|<R$, continuous for $|z| \leq R$, prove that $u(a)=\frac{1}{2 \pi} \int_{|z|=R} \frac{R^{2}-|a|^{2}}{|z-a|^{2}} u(z) d \theta$ for all $|a|<R$.
b) For $\sigma=\operatorname{Re}(s)>1$, prove that $\zeta(s)=-\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{(-z)^{s-1}}{e^{z}-1} d z$, where $(-z)^{s-1}$ is defined on the complement of the positive real axis as $e^{(s-1) \log (-z)}$ with $-\pi<\operatorname{Im} \log (-z)<\pi$.
9. State and prove Arzela-Ascoli theorem.
10. State and prove Riemann mapping theorem.
11. a) Prove that a discrete module consists either of zero alone, of the integral multiples $n w$ of a single complex number $w \neq 0$, or of all linear combinations $n_{1} w_{1}+n_{2} w_{2}$ with integral co-efficients of two numbers w_{1}, w_{2} with non-real ratio w_{2} / w_{1}.
b) Prove that the Weierstrass \mathbb{P}-function can be represented in the form

$$
\mathbb{P}(z)=\frac{1}{z^{2}}+\sum_{w \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

12. a) Derive the differential equation satisfied by the Weierstrass ρ - function.
b) Derive Legendre's relation $\eta_{1} w_{2}-\eta_{2} w_{1}=2 \pi i$.
