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SECTION – A              ( 5 X 8 = 40 ) 

 ANSWER ANY FIVE QUESTIONS  

 

1. Suppose that )(zf  is analytic in the annulus 21 rzr <<  and continuous on the 

closed annulus.  If )(rM  denotes the maximum of )(zf  for rz = , show that 
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3. Prove that a locally bounded family of analytic functions has a locally bounded 

derivative. 

 

4. Prove that the functions )(wFZ = which map 1<w conformally onto polygons 

with angles ( )nkk ,...,2,1=πα  are of the form ')()(
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where kk αβ −=1 , the kw  are points on the unit circle and ',cc  are complex 

constants, 20 << kα ,  11 <<− kβ . 

 

5. Prove that a continuous function )(zu  which satisfies the mean value property 
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6. Prove that any two bases of the same module are connected by a unimodular 
transformation. 

 
 

7. Prove that the zeros naaa ,...,, 21  and poles nbbb ,...,, 21  of an elliptic function f  

satisfy ≡+++ naaa ..., 21  )(mod...21 Mbbb n+++ , M being the period module 

of f . 
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SECTION – B              ( 3 X 20 = 60 ) 

 

ANSWER ANY THREE QUESTIONS 

 

8. a)  Suppose that )(zu  is harmonic for ,Rz <  continuous for ,Rz ≤ prove that  
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b) For 1)Re( >= sσ , prove that dz
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defined on the complement of the positive real axis as )log()1( zse −−  with 

ππ <−<− )log(Im z . 

 

9. State and prove Arzela-Ascoli theorem. 

 

10. State and prove Riemann mapping theorem. 

 

 

11. a)  Prove that a discrete module consists either of zero alone, of the integral  

multiples nw  of a single complex number 0≠w , or of all linear combinations 

2211 wnwn +  with integral co-efficients of two numbers 21,ww with non-real 

ratio 
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b) Prove that the Weierstrass �-function can be represented in the form 
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12. a)  Derive the differential equation satisfied by the Weierstrass ρ - function. 

b)  Derive Legendre’s relation iww πηη 21221 =− . 
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