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SYNOPSIS

EMBEDDING TECHNIQUES IN
INTERCONNECTION NETWORKS AND

CHEMINFORMATICS

1 Introduction

The field of mathematics plays a vital role in various fieldsie@f the important areas
in mathematics is Graph Theory which is used in structuratl@ This structural

arrangement of various objects or technologies lead to neantions and modifications
in the existing environment for enhancement in those fiel@seated in the works of

Leonhard Euler (1707-1783) in the eighteenth century aneldped by Arthur Cayley

(1821-1895) and James. J. Sylvester (1814-1897) in theée@nth century, Graph Theory
became in the twentieth century an essential tool in marasasescience and technology.
Graph theoretical ideas are highly utilized by computegrsoe applications, especially in
research areas of computer science such as data minings seggentation, clustering,
image capturing, networking and so on. For example, a datatate can be designed in
the form of tree which in turn utilizes vertices and edgesusrgraph theory is used to

model the relationship between a network of vertices ané®dg

One of the most important problems facing technology todathé development of



scientific supercomputers. Computer science expertsviedinat future supercomputers
will be based on large-scale parallel processing. Such guaten will have a system

consisting of many processors and memories. An essentigdaoent of such computers
is the interconnection network providing communicationoaigy the processors and
memories of the system. The advent of very large scale iatiegr (VLSI) makes it

possible to put more processors which are faster and have me&mory on a single chip.
Thus, the interconnection networks of future multiprooeg®mputing systems may be
very complex. Indeed, we are seeing this trend today. The&wiion Machine developed

by Thinking Machines Inc. consists of 216 single-bit premes all working in parallel!

Interconnection networks are often modeled by graphs. Traces of the graph
correspond to processing elements, memory modules, orsigthes. The edges
correspond to communication lines. If communication is-aag, the graph is directed,;
otherwise, the graph is undirected. Here is an incompleteofi graph properties that
a good model might possess: simple and efficient routingrigos, small diameter,
high connectivity and small degree. Also, one would wishittierconnection network
to be as efficient as possible. Ideally one wants each procéssend a message and
each memory module to receive a message with each "clock @eie approach to this
problem is to design networks with lots of switching nodesrexted in such a way as to
ensure multiple memory-processor paths. There is alsolélyecut problem”, (i.e), the
problem of embedding the graph in a 2 or 3 dimensional Euafidgace in a manner
that can be realized in hardware. Additionally, it is desleathat the longest wire link

be as short as possible since timing problems arise otherWwiading graphs that satisfy



these conditions can be a formidable task; in fact, the ptigseof high connectivity and
small degree seem to be inversely proportional to each.cflmersequently, in a particular
application, trade-offs must be made. Vertex symmetriplgsaare especially well suited
as models for interconnection networks because these gtegpe the property that the
graph viewed from any vertex looks the same. Moreover, tmensgtry of the graph

minimizes congestion, as traffic is distributed uniformiyeoall vertices.

2 Preliminaries

2.1 Graph Embedding

An interconnection network of a system provides logicallgpecific way in which all
components of the system are connected. In this, the siiomlat one architecture by
another is important. The problem of simulating one netwlykanother is modeled
as agraph embedding problemThe need for efficient embedding stems from atleast
two different directions. If a networkl can be embedded in a network, then all the
algorithms developed for parallel processing with netwdrican be easily transported
onto another processor netwoik. Secondly, mapping parallel algorithms onto parallel
architectures often leads to embedding of the control @& fliatv graphs of the algorithms
into the underlying graph of the network. While the generabjem of graph embedding
is difficult, by exploiting the special structure of the irdennection schemes, a number
of results relating to optimal embedding of one class of net& into another have been
developed. Embedding the structures may result in sulistaatings in communication

time. The transmission delay is an important measure forgthbal communication



efficiency of an interconnection network.

There are several results on the embedding problem of \saaathitectures such as
1-vertex-fault-tolerant cycles embedding on folded hgpbes [37], trees on cycles [9],
trees on stars [38], hypercubes into grids [5], completafyitree into grids [30], grids
into grids [34], ladders and caterpillars into hypercubgshinary trees into hypercubes
[11], complete trees into hypercubes [4], incomplete hgpee in books [12],m-
sequenciak-ary trees into hypercubes [33], ternary tree into hypeedudd], enhanced
and augmented hypercube into complete binary tree [25uleint into arbitrary trees,
cycles, certain multicyclic graphs and ladders [17], hgpbes into cylinders, snakes and

caterpillars [26] and path embedding on folded hypercuB8gk |
The formal definition of an embedding is as follows:

Definition 2.1 [5] Let G and H be finite graphs witm vertices. An embedding of a

guest graph(y into a host graph/ is defined as follows:

(i) f is a bijective map fronV (G) — V(H)

(i) Py is an one-to-one map fronk'(G) — {Pr(u,v) : Pr(u,v) is a path in H

betweenf(u) and f(v) for (u,v) € E(G)}.

The graphG that is being embedded is calledigtual graphor aguest graprand H is

called ahost graph Some authors use the naéclling instead of embedding [4].

Dilation, expansion, congestion and wirelength are sonseatteria which determine

the quality of an embedding.



Definition 2.2 If e = (u,v) € E(G), then the length of?(u,v) in H is called the
dilation of the edge:. The maximum dilation over all edges@fis called the dilation of

the embedding .

Definition 2.3 The expansion of an embeddirigs the ratio of the number of vertices of

H to the number of vertices af .

Definition 2.4 The edge congestion of an embeddih@f G into H is the maximum

number of edges of the grapgh that are embedded on any single edge4of

In other words,
EC;(G,H) =max EC(G, H(e)),

where the maximum is taken over all the edges H and the minimum edge congestion

of G into H is defined as
EC(G,H) =min EC{(G, H)

where the minimum is taken over all embeddirigsf &G into H.

The edge congestion problem of a graghs to find an embedding aoff into H that

inducesEC(G, H).
Definition 2.5 The wirelength of an embeddingof G into H is given by

WLi(GH)= Y du(f(u),f(v))= Y EC;G, Hie))

(u,v)EE(G) e€E(H)

wheredy (f(u), f(v)) denotes the length of the paffy(u,v) in H.



Definition 2.6 The wirelength of embedding into H is defined as

WL(G, H) = min WL (G, H)

where the minimum is taken over all embeddirigsf &G into H.

The edge isoperimetric problem [15] is used to solve thelamgth problem when the
host graph is a path and is NP-complete [13]. The following t&rsions of the edge

isoperimetric problem of a grapf(V, E) have been considered in the literature [6].

Problem 1 : Find a subset of vertices of a given graph, such that the edge c
separating this subset from its complement has minimal @meng all subsets of the
same cardinality. Mathematically, for a given, if 6;(m) = Acén‘ifxl‘_ |0c:(A)| where

0c(A) ={(u,v) € E:ue A v ¢ A}, then the problemisto findl C V and|A| = m

such thatdg(m) = |05(A)|.

Problem 2 : Find a subset of vertices of a given graph, such that the nuoflexiges
in the subgraph induced by this subset is maximal amongdalided subgraphs with the
same number of vertices. Mathematically, for a givenif I5(m) = Ac‘r/n%_ |Ig(A)|

where I(A) = {(u,v) € E : u,v € A}, then the problem is to findl C 1V and

|A| = m such thatl;(m) = |1c(A)].

For a givenm, wherem = 1,2,...,|V|, we consider the problem of finding a subset
A of vertices of G such that|A| = m and|0s(A)| = 65(m). Such subsets are called

optimal with respect to Problem 1. We say that optimal sugaet nested if there exists



a total order© on the setl” such that for anyn = 1,2, ..., n, the collection of the first
m vertices in this order is an optimal subset. In this case Wdtlwmorder© an optimal
order [15, 6]. This implies thatV L(G, Py|) = ileg(m), where P, is a path onn
vertices. Again, a subset of vertices ofGG such th;1t|A| =m andlg(m) = |Ig(A)| is

said to be optimal with respect to Problem 2.

If a subset of vertices is optimal with respect to Problenthen its complement is also
an optimal set. However, it is not true for Problémn general, although this is indeed
the case if the graph is regular [6]. In the literature, Peab?® is defined as thenaximum

subgraph problenfil3]. For a regular graph, Problem 1 and Problem 2 are ecgnival

2.2 Topological Indices

Indices are more complex methods to represent the striigiumaerties of a graph since
they involve the comparison of a measure over another. A inigéx shows a developed
network and is also an indicator of the shape of a network. sThuopological index
is a real number related to a chemical graph. A chemical graghgraph in which
every vertex has a degree = 4. Each molecule is described hgraical graph. The
vertices of this graph denote the atoms and the edges areotius lof the molecule.
Indices have applications in Nanotechnology, in Drug desa develop Quantitative
Structure Toxicity Relationship (QSTR), Quantitative Usture Property Relationship
(QSPR), Quantitative Structure Activity Relationship @ and Phenylenic nanotubes
and nanotori. Padmakar V. Khadikar introduced a new topcédgndex calledPadmakar

- Ivan index[20, 22], which is abbreviated a8/ index. In a series of papers, Khadikar



et. al. computed thé’I index of some chemical graphs [22, 21, 23]. Ali Reza Ashrafi
and Amir Loghman computed thBI index of a zig- zag polyhex nanotube [2] and they

also computed”! index of some benzenoid graphs [2].

Definition 2.7 [20] The PI index of a graphG is defined asP1(G) = > [n..(e|G) +
Nev(€|G)], where for the edge = (u,v),n..(e|G) is the number of edges @f lying
closer tou than v; n.,(e|G) is the number of edges @f lying closer tov than v and
summation goes over all edges@f When there is no ambiguity, we dendté(G) by

PI and definePl =Y __p[new + e -

In this thesis, we use embedding as a tool to comptitendex of graphs.

3 Outline of the Thesis

This thesis pertains to the study of embedding one interction network into another
and use embedding concepts to obt&ih index of certain chemical graphs. The thesis

contains seven chapters.

In Chapter 1, we present a few basic graph-theoretic cos@eqt their applications,

and an overview of the thesis.

In Chapter 2, we record a brief history of the embedding cptscand a concise survey

of work done on embedding problems.

In Chapter 3, we determine the exact wirelength of foldedengpbes into cylinders

and torii.
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Figure 1: Folded hypercub&'Q* with dashed lines representing the complementary

edges

One of the most popular variants of the hypercube is the tbldgercube, which can
be constructed by adding a link to every pair of nodes with giementary address. The
folded hypercube has been shown to be able to improve thersigsperformance over a

regular hypercube in many measurements [1, 39].

The folded hypercube is represented 8" and is defined as follows:

Definition 3.1 [32] For two verticesz = z1x9 - - -z, andy = yyy2 - - - y, of Q" (x,y)

is a complementary edge if and only if the bitscadind y are complements of each other,
thatis, y; = 7; for eachi = 1,2, ..., r. Ther-dimensional folded hypercube, denoted by
FQ" is an undirected graph obtained frofp” by adding all complementary edges. See

Figure 1.

It is easy to see that any-dimensional folded hypercubé&'()” can be viewed
as G(0Q"1,1Q"1;C + C) where 0Q"~! and 1Q"~! are two (r — 1)-dimensional
hypercubes with the prefix and 1 of each vertex respectively, aid = {(0u, 1u) : Ou €

V(0T andlu € V(1Q™Y)},C = {(0u, 17) : Ou € V(0Q"') and1u € V (1Q" 1)}



[41].

Definition 3.2 [26] The 2-dimensional grid is defined aB;, x P, , whered; > 2 is an
integer for eachi = 1, 2. The cylinderC,, x P;,, whered,,d, > 3 isa P,;, x P, grid

with a wraparound edge in each row. See Figure 2(a).

Itis clear that the vertex set d@f;, x Py, isV = {x125: 0 < x; <d;—1,i=1,2} and

two verticesz = 212, andy = y,y, are linked by an edge, ift; — y1| + |22 — 12| = 1.

Lemma3.3Fori=1,2,.--2"7/2 —1,

0, 1 x 272, .. (2[7/2) — 1) x 2lr/2]
pee _ | L 1x20ans e @) ol 4

i—1, 1x20/2 441, (207/21 — 1) x 2lr/2) 41
is a composite set id'Q".

Notation: Let Cy,Cq,- - -, C

,r51_, denote the columns of. Let [C}, Ciyy, - - -, O}

denote the submatrix of. constituted by the columné€’;, C;q,- - -,C;. Let Uj =

{lnj, ln=1)j> -+ >l }

Lemma3.4Forj=1,2,-- ., 20r/21-1
Céﬂex = [C], Cj-i-l; S C2L7~/2J_1, Cl+(2LT/2J_1), cee Cj+(2“/21*1_1)]

IS a composite set i'Q".
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Lexicographic embedding The lexicographic embedding [5] ofF'@Q" with
lexicographic labeling) to 2" — 1 into C|:) x Pz is an assignment of a label to the

vertexxiz, of C|zy x Pzp as
x4+ 2 ey if 0 <y < 203171 — 1,
ry + 2t21 (3205171 Jif 2f31-1 < gy < 2151 — 11 2, even
xy 4+ 2151(3.215171 — gy if 203171 < @y < 2131 — 1 2, odd

where( < z; < 2[z1 — 1. This lexicographic embedding is denotedley.

Theorem 3.5 The lexicographic embedding lex of the folded hyperchalég into the

cylinder Cyr/2) X Pyrrj21 induces a minimum wirelength L(FQ", Cyrj2) X Pyrrya1).

Theorem 3.6 The exact wirelength of embeddiid)” into the cylinderCy ./2; X Pyrr/2)

is given by,

WL(FQ", Cyir2) X Porrjo1)

olr/2] _1
= > i((r+ 122 2] E(FQ"(Ljgir/2y)| + (r +1)2771

=1
+2(r — 1)272

olr/2] 1

- ST i((r+ 120720 = 2| E(FQT (Lygirs2)| 4 727

i=1

The above results have been presented atithaVorkshop on UNESCO-HP "Brain
Gain Initiative” in conjunction with3"¢ Kuwait Conference on e-Services and e-Systems
(KCESS 2012), Kuwait, in December 18-20, 2012. Also, the=ssults have been

submittedfor publication tolnformation Processing Letters
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Figure 2: @) Cylinder Cy x P, (b) TorusC} x C,

The family of torii is one of the most popular interconnentioetworks due to its
desirable properties such as regular structure, ease tdnngmtation and good scalability.
In recent years, the theory of torus embedding has found rapplycations. It has been
used in many practical systems such as Cray T3D, Cray T3Hs&#WP3000, Ametak

2010, Intel Touchstone and so on [28].

Definition 3.7 [24] An n-dimensional torusC(mq,ms,...,m,) is defined as the
Cartesian product of. cyclesC,,, x Cy,, x ... x Cp,, , Where(C,,, is the cycle graph

with m; vertices. See Figure 2(b).

Lemma 3.8 Rl® = {0,1x4,2x4, -+, (272=1) x4, 1,1 x4+1,2x4+1,--- (22—

1) x 4+ 1} is a composite set ih'Q)".

Lemma 3.9 RE® = {0,1x4,2x4, - (272—=1)x4,2,1 x44+2,2x4+2, - (272

1) x 4+ 2} is a composite set i'Q)".

Lemma3.10Let A = 0,1,---,2""' — 1. Forj = 1,2,---,2"3 — 1, let B; =
A\{0,1,-- - 4j — 1} U {2 — 1,2" — 2,-- -, 2" — 45}, for ;7 even and forj odd, let

12



Bj = A\{0, 1, -+, 4j —1}UB; 1U{2"—(4j+1),2"— (4 +2),2"—(4)+3),2"— (4 +4)}

IS a composite set i Q" .

Theorem 3.11 The lexicographic embedding lex of the folded hyperchlg¥ into the

torus Cy x Cy-—2 induces a minimum wirelength L(FQ", Cy x Cyr-2).

Theorem 3.12 The exact wirelength of embeddidd)" into the cylinderC, x Cs-2 is
given by,
WL(FQ",Cy x Cor—2)
= FEC(R;) + EC(Cy)
2 (G4 )2~ 2B (L)
iz
The above results have besabmittedfor publication toJournal of Interconnection

Networks.

In Chapter 4, we determine the exact wirelength of circuteattvorks into a family of

grids.

The circulant network is a natural generalization of doldg network and have been
used for decades in the design of computer and telecomntigmcgetworks due to their
optimal fault-tolerance and routing capabilities [8]. dtalso used in VLSI design and

distributed computation.

From a theoretical point of view, there are thousands of ipatibns analyzing
their algebraic properties. From a more practical persggctirculant graphs have

been employed in several applications. In the sixties, ehg®phs were used to

13
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Figure 3: Circulant grapld(8; {1, 2,3})

build interconnection networks for distributed and paalystems. In the seventies,
circulant graphs constituted the basis for designing sedata alignment networks for
complex memory systems. In the eighties, several optimoizatrelated to the diameter
minimization of degree four circulant graphs, enhancedagmglicability to the design
of efficient interconnection networks. Nowadays, the asial\and characterization of
circulant graphs and their applications still constituté\e research areas. In addition,
these graphs are regular, vertex-symmetric, maximallyeoted and, after an adequate

transformation, they can be represented as mesh-conrteptadgies [3].

Definition 3.13 [17] A circulant undirected graph, denoted loy(n; +5) where S C
{1,2,- - -,[n/2]},n > 3 is defined as a graph consisting of the vertex Bet=
{0,1,- - -,n — 1} and the edge setl = {(i,7) : |j — i| = s(modn),s € S}. See

Figure 3.

Proposition 3.0.1 [17] The number of edges in a maximum subgraphtovertices of

14



G(na iS)v‘S: {1727" '7]}71 S]S |_n/2J,7’L >3 is given by,

k(k—1)/2, k<j+1
£ =1 kj—3j(i+1)/2, J+Hl<k<n-—j
(1/2){(n—k)?+@j+1Dk—(2j+1)n}, n—-j<k<n

Proposition 3.0.2 [17] A set ofk consecutive vertices @f(n; +1),1 < k < n induces

a maximum subgraph @¥(n; +5) whereS = {1,2,---,5},1 < j < |n/2],n > 3.

Theorem 3.14 The maximum subgraph on the set offalfertices ofG(n; {1,2,---,j}),

for k < j, is a complete graph ok vertices.
An [ x m grid with [ rows andm columns is represented b\ [l x m].

Lemma 3.15 For m odd,

R = {0, 1x4, - (m—1)><4}

Ry, — {1, Ixd+41, - (m—1)><4+1}

and for m even, we get,

0, 1 x4, /2] — 4,
R = [n/2] + 3, ([n/2] +3) + (4 x 1), ..
(/2] +3) + (4 x ((m/2) — 1))

1, 1 x4+1, ([n/2] —4)+1,
Ry, = ([n/2]+3) —1, (([n/2] +3)+ (4 x 1)) — 1,
([n/21+3)+ (4 x (m/2—-1))—1

\

and R3 which is isomorphic ta?; in both cases are maximum subgraph&im; {1, 2, -
5 [n/2] = 1}).

15



Lemma3.16For 1 < j < m -1, C; = {0,1,2,---,45 — 1}, is maximum in

G(n; {17 2,0, |_n/2J - 1})

Theorem 3.17 The embedding of the circulant networkG(n; {1,2,- - -, [n/2] — 1})
into the grid M [4 x m], wherem > 2 induces a minimum wirelengthy (G (n; {1, 2, - -

o n/2] —1}), M[4 x m]).

Theorem 3.18 The exact wirelength of embedditg4n; {1,2,---,[(2n — 1)}) into the
grid M[4 x n], wheren > 2 is given by,
WL(G(4n; {1,2,---,(2n — 1)})), M[4 x n]) = 2(5n*+ 6n — 10) +
n—1

D [8j(2n — 1) = 16(n — j)* — 4j(8n — 3) + 4n(4n — 1)]

j=2

The contents of this chapter have beemlishedn thenternational Journal of Pure

and Applied Mathematics, Vol. 86, no. 6, 883-891, 2013.

In Chapter 5, we determine the exact wirelength of hypersul® extended banana

trees and arbitrarily fixed generalized banana trees.

The hypercube is a very popular interconnection networké&vallel computation since
it possesses many attractive properties such as low digmetatively small degree,
recursive structure and so on. One of the biggest reasonthéopopularity of the

hypercube is its ability to efficiently embed many paralielatectures [5, 7, 11].

Definition 3.19 [40] For » > 1, let Q" denote the graph of-dimensional hypercube.

The vertex set ofQ” is formed by the collection of all--dimensional binary

16
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Figure 4. Hypercubé),

representations. Two verticasy € V(Q") are adjacent if and only if the corresponding

binary representations differ exactly in one bit. See Fagdir

Equivalently if n = 2", then the vertices of)” can also be identified with integers
0,1,...,n — 1 so that if a pair of vertices and j are adjacent then— ; = 27, for some

p=0.

Definition 3.20 [27] An incomplete hypercube arvertices of()” is the subcube induced

by {0,1,---,i— 1} and is denoted by,;, 1 <i < 2",

Definition 3.21 [10] A Banana TreeB3(n, k), is a graph obtained by connecting one leaf
of each ofn copies of ak-star graph with a single root vertex that is distinct fronh thle

stars.

Definition 3.22 An Extended Banana Tree denoted®f{fi,, ns, - - -, 1y k1, ko, -+ <5 ki)
is a graph obtained by connecting one leaf of each{ef,ny,- - -,n,} copies of
{k1,ka,- - -,k } - Star graphs with a single root vertex that is distinct froihthe stars.

See Figure 5(a).

17



(a) (b)

Figure 5: &) B(2,1;4,5) (b) 7'(2,3,5)

Theorem 3.23 The exact wirelength of embeddidy into B(nq,no, - - -, ny; k1, ko, - -

-, k), is given by

WL(QT, B<n17n27 s Ty kl? k27 Y km)) = T[2T - 2(711 +ng A+t nm) - 1] +

rot ki —m] = 2030 2T =] = (= 1) [0 R - 200 2

Definition 3.24 [19] Consider a set of caterpillars, having equal (or fixed) diéene
in which one of the penultimate vertices is of arbitrary agegrand all other internal
vertices including the other penultimate vertex is of fixednedegree. Merge an end-
vertex adjacent to the penultimate vertex of fixed even degfreach such caterpillars
together. The rooted tree thus obtained is called ArbitsaFixed Generalized Banana

Tree. See Figure 5(b).

For our discussion, we describe the Arbitrarily Fixed Gafiezed Banana Tree as
follows: Let T'(I,n, k) be the rooted Arbitrarily Fixed Generalized Banana Tredritav
[ copies ofC(n, k) whereC'(n, k) denotes a caterpillar. A caterpillar is a tree such that

removing the vertices of degree - 1 called tbgsyields a path, called thepine Heren

18



represents the number of vertices of the spinefamepresents the number of vertices of

the legs. We also impose the condition th@') = 2" + 1.

Theorem 3.25 The exact wirelength of embeddiny into 7'(1, n, k) is given by,
WLQ",T(l,n,k))) = r[20 —2(n1 +ng + - -+ +ny) — 1+ 7Dt ki — m] —

20y a2 =]

The results obtained in this chapter have bgwasentedin the International
Conference on Mathematics in Engineering and Business Mamggment (ICMEB
2012), Chennai, India anécceptedfor publication in theJournal of Combinatorial

Mathematics and Combinatorial Computing.
In Chapter 6, we determine the exact wirelength of Peterssgphg into certain trees.

In 1950 a class of generalized Petersen graphs was intrddyc€oxeter and around
1970 was popularized by Frucht, Graver and Watkins. Ther&ategraph is certainly
one of the most famous objects that graph theorists have eonoss. This graph is a
counterexample to many conjectures: for example, it is Aficiorizable despite being
cubic and without bridges (Taits conjecture), and it is nanfitonian. But being 3-
transitive (that is, its automorphism group is transitive directed paths of length 3),
it is highly symmetric; however, it is not a Cayley graph! Maadditional facts about
the Petersen graph can be found in [29]. The Petersen gray@aegal in the chemical
literature as the graph that depicts a rearrangement oftaigipyramid complexeX'Y 5
with five different ligands when axial ligands become equat@nd equatorial ligands

become axial [31].

19
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Figure 6: Circular laddeP (8, 1)

Definition 3.26 [40] The generalized Petersen gragh(m,n),1 < m < n — 1 and
n # 2m, consists of an outet -cycleuy, us, - - -, u,, a set ofn spokequ;,v;),1 <i <n,
and n inner edges(v;, v;1,,) With indices taken module. It is a 3-regular graph and

contains2n vertices and3n edges. See Figure 6.

Parallel labeling[16]. For 1 < i < n, we call the vertices;; andv; of P(m,n) as
outer rim and inner rim vertices respectively and label thigesu; andv; as2i; —2 and
21 — 1 respectively. We call this labeling asrallel labelingof the generalized Petersen

graphP(m,n).

We know that the generalized Petersen grdfn,1),n > 3 is the circular ladder

K2 X Cn

Proposition 3.0.3[16] The number of edges in a subgraph induced by any sdt of

vertices ofP(n,1),3 < k < nis atmostk + |k/2| —2 forn > 3 .

Proposition 3.0.4 [16] Let H be a subgraph of’(n, 1) induced byk vertices,3 < k <

n such that,

20



(i) if k£ is even, the labels of thee vertices are{i + 1,7+ 2,---,i+ k} and

(ii) if k is odd, the labels of — 1 vertices are{i + 1,i+2,---,i+k — 1} and thek"

vertexis labeled — 1,i,i + k,ori+k+1

wherei is odd and the labels are taken mod@n. Then H is a maximum subgraph of

P(n,1),n > 3.

Complete binary trees are perfectly balanced and have tikamaen possible number
of nodes, given their height. However, they exist only wheis one less than a power of
2. For any non-negative integer, the complete binary tree of height denoted by7;,,
is the binary tree where each internal vertex has exactlydwidren and all the leaves
are at the same level. Thus a complete binary Trebasn levels and level, i < i < n,

contains2’ — 1 vertices. Thusl;, has exacthy2” — 1 vertices.

Definition 3.27 [18] The 1-rooted complete binary tré®! is obtained from a complete
binary treeT,, by attaching to its root a pendant edge. The new vertex igdalie root of
T! and is considered to be at level 0. Therooted complete binary treg* is obtained
by takingk vertex disjoint 1-rooted complete binary tre€$ on 2" vertices with roots

sayry,re, - - -, and adding the edges;, 7;11), 1 <i < k — 1. See Figure 7(a).

Theorem 3.28 The exact wirelength of embedding a generalized Petersepphgr

P(27~1 1) into the 1-rooted complete binary tré! is given by,
n—1 .

o 95 ]
WL(P2" 1), TH = 272" °) +3+ ZQ”—J [3(27 — 1) —2(2 + LTJ —3)]

=1
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0 2 4 6 8 10 12 14
(a) (b)

Figure 7: (a)1-rooted complete binary tree with inordeelaty, (b) Binomial treeB,

Theorem 3.29 The exact wirelength of embedding a generalized Petersephgr
P(2"1,1) into the k-rooted complete binary tre€?” is given by,

WL(P@2" ' 1),TF) = w@“%+3+§§ﬂﬁpekan—%?+¢g§iJ—@]

’ T ng
=4

Ak — 1)

Definition 3.30 [18] A binomial tree B, of height O is a single vertex. Forall > 0, a
binomial tree B,, of heightn is a tree formed by joining the roots of two binomial trees
of heightn — 1 with a new edge and designating one of these roots to be thefdbe

new tree. A binomial tree of height has2™ vertices. See Figure 7(b).

Theorem 3.31 The exact wirelength of embedding a generalized Peterseqphgr

P(2"1,1) into the binomial treeB,, is given by, )
WL(P(2' 1), By) = 32" +4+ Y 27 [3(21) =2/ — 2771 4 4],

j=2

The contents of this chapter has beabmittedo the Journal of Computer Science.

In Chapter 7, we determine the Pl Index of Mesh Structurechiteds.
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Graph theory represents a very natural formalism for chigyngd has already been
employed in a variety of implicit forms. Its applicationsdasm to multiply so fast
that chemical graph theory bifurcated in manifold ways tole¥ into an assortment of
different specialisms. The current panorama of chemicgblgitheory has been erected
on foundations that are essentially graph-theoreticalatumre. The chemical graphs
are now being used for many different purposes in all the miajanches of chemical
engineering and this renders the origin of the earliestigri@pplication of graph theory
of some considerable interest. The mesh, honeycomb anadanetworks are not only
important interconnection networks but also bear resenceldo atomic or molecular
lattice structures of chemical compounds. A survey of thestevorks is given in [36].
There are three possible tessellations of a plane with aeguallygons of the same kind:
square, triangular and hexagonal, corresponding to digidiplane into regular squares,
triangles and hexagons respectively. The mesh networkssedan square tessellation

whereas the honeycomb mesh is based on hexagonal tessellati

We compute theP] index of mesh, torus and honeycomb mesh networks making use

of embedding techniques. Further, we also derivefliandex of NaCl molecule.

Lemma 3.32 The PI index of a graphG(p, ¢) is given byPI = ¢* = >~ _ || , where
q is the number of edges i@ and for any edge: = (u,v), 7. is the set of edges which

are equidistant from botlh and v.

Lemma 3.33 Let G = (V, F) be a graph and le{ E,, Es, - - -, E}} be a partition of &

k
such thatfore, ¢’ € E;,1 <i < k,7. = 7o thenPI(G) = ¢* = |7..|t; wheret; = | E;|
i=1

2
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ande; € E;,,1 <i<k.

Theorem 3.34The PI index of the 3-dimensional mesh/(r,s,t) is given by

PI(M(r,s,t)) = (3rst — (rs + st +tr))* — (r — 1)s?t% — (s — 1)t?r? — (t — 1)r?s>.

Theorem 3.35 The PI index of the sodium chlorid&/aC' is given byPI(NaCl) =

2430.

Theorem 3.36 The Pl index of the torug’(m, n) is given by,

2mn(2mn —m —n), when m,n are even;

mn(4mn —m —n), when m,n are odd;

mn(4mn —m — 2n), when m s even and n is odd;
mn(4mn — 2m —n), when m s odd and n is even.

PI(T(m,n)) =

Theorem 3.37 The PI index of the honeycomb megh\/,; of dimensiond, is given by

d—1
PI(HM,) = (9d® — 3d)? — 12d% — 63" (2d — i)?.

i=1

Theorem 3.38 The PI index of benzenoid grapfi(m, n) is given by

2 2 .
PI(G(m’n)):{ 8m?2 + 24n2 + 30mn + 10n + 2, n>m;

62n2 + 26n + 8, n=m.

The results obtained in this chapter have been presentedhen Iiiternational
Conference on Informatics Engineering and InformationeSoe (ICIEIS 2011),
Malaysia November 14-16, 2011. Also, these results haven lpelished in:
Proceedings of ICIEIS 2011,ecture Notes in Computer Science Springer-Verlag,

CCIS 253, no. 3, 400409, 2011.
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