STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/SS54

B.Sc. DEGREE EXAMINATION NOVEMBER 2015 BRANCH III - PHYSICS FIFTH SEMESTER

COUD		REG. No			
COUR					
PAPE					
TIME	: 30 MINUTES	MAX. MARKS : 30			
SECTION – A					
	TO BE ANSWERED IN THE QUESTION I				
ANSWER ALL QUESTIONS: (30x1=30)					
Choose	e the correct answer:				
	Crystalline Argon has				
	a) Van der Waals bond b) ionic bond c) met	allic bond d) covalent bond			
2.	Hydrogen bond has bond energy of the order				
	a) 1 KeV b) 10 eV c) 1 eV	d) 0.1 eV			
3.	Sodium has				
	a) ionic bond b) Van der Waals bond c) metal	llic bond d) covalent bond			
4.	Diamond is an example of				
	-	er Waals bond d) ionic bond			
5	With your notations, thermal conductivity can be ever	and an			
	With usual notations, thermal conductivity can be expr				
	a) $k = cvl$ b) $k = \frac{cv}{3}$ c) $k = ct$	$k = \frac{cvl}{3}$			
	J	Ū.			
6	Hall voltage will be developed in a direction				
		lly perpendicular to magnetic field B and current I			
	b) perpendicular to B and parallel to I				
	c) parallel to B and I				
	d) perpendicular to I and parallel to B				
	d) perpendicular to I and parallel to B				
7.	With usual notations, the Hall coefficient can be expre	ssed as			
	a) $R = ne$ b) $R = \frac{n}{e}$ c) $R = \frac{e}{n}$	d) $R = \frac{1}{m_{e}}$			
	e n	, ne			
-					
	The expression for electrical conductivity can be conve	entionally written as			
	a) $\sigma = \frac{ne^2\tau}{m}$ b) $\sigma = \frac{ne\tau}{m}$ c) $\sigma = n$	em d) $\sigma = ne\tau$			
	a) m m	<i>,</i>			
9.	Curie's law can be written as				
	a) $\psi = cT^2$ b) $\psi = \frac{c}{T}$ c) $\psi = \frac{1}{T}$	d) $\psi = cT$			
		/ -			

10. A diamagnetic mat a) $\psi = 0$		c) $\psi < 0$	d) d) $\psi > 1$		
a) maximum posit	e, an antiferromagnet ha ive susceptibility ve susceptibility	b) maximum negativ			
	equation can be written as b) $j = \frac{-A}{\mu_0}$		d) $j = \frac{-A}{\frac{\mu}{0}\lambda_L^2}$		
	1 <i>A</i> and the magnetic field b) $B = curl A$		d) $B = A^{-1}$		
14. When a superconducting material is cooled below the transition temperature, the magnetic lines are effected from the material. This isa) Josephson effectb) Isotopic effectc) Meissner effectd) Hall effect					
0 1	conducting electron pair b) Josephson effect	-	d) Hall effect		
Fill in the blanks;					
16. Cohesive energy is defined as					
17. Madelung constant $\alpha = $					
18. An antiferromagnet attains maximum susceptibility at temperature.					

121

- 19. As the atomic mass of a superconducting element increases, the critical temperature
- 20. The entropy of a substance in the superconducting state is _____ (lower/higher) then in the normal state.

State whether the following statements are true or false:

- 21. A missing atom or ion in a crystal is called Frenkel defect.
- 22. Transfer of an atom from the lattice site to an interstitial position is called Schottky defect.
- 23. F centre is a positive ion vacancy in Alkali halides.
- 24. In alkali halides, two adjacent F centres form a M centre.
- 25. Three adjacent F centres form a R centre.

Answer briefly:

26. What is Schottky defect?

27. What is Wiedemann-Franz ratio?

28. State Hall effect.

29. Explain magnetic domain.

30. Give an example of ferrite.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/SS54

B.Sc. DEGREE EXAMINATION NOVEMBER 2015 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE	:	MAJOR - CORE
PAPER	:	SOLID STATE PHYSICS
TIME	:	2 ¹ / ₂ HOURS

MAX. MARKS: 70

5x5 = 25

3x15=45

SECTION – B

Answer any Five Questions:

- 1. Explain the types of bonding in crystals with example.
- 2. Evaluate Madelung constant for NaCl crystal.
- 3. Explain colour centres in Alkali halides.
- 4. Derive an expression for electrical conductivity of solids.
- 5. Outline Langevin theory of diamagnetism.
- 6. Draw the hysteresis loop of a ferromagnetic material and explain.
- 7. Explain what are Type I and Type II superconductors.

SECTION – C

Answer any Three Questions:

8. a) Explain the properties of covalent crystals. (7)
b) Explain metallic bond and properties of metallic solids. (8)

- 9. a) Outline the calculation of Schottky defect in a crystal. (7)
 b) Outline the calculation of Frenkel defect in a crystal. (8)
- 10. Discuss Drude Lorentz free electron theory.
- 11. Explain Langevin's theory of paramagnetism.
- 12. Outline BCS theory of superconductivity and explain the applications of superconductors.
