STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086

(For candidates admitted during the academic year 2015–16)

SUBJECT CODE: 15MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : MAJOR – CORE

PAPER : ALGEBRA AND TRIGONOMETRY

TIME : 3 HOURS MAX. MARKS: 100

SECTION – A (10X2=20) ANSWER ALL THE QUESTIONS

- 1. Solve the equation $x^3 12x^2 + 39x 28 = 0$ whose roots are in A.P.
- 2. If the roots of $x^3 12x^2 + 23x + 36 = 0$ are -1,4,9 find the equation whose roots are 1,-4,-9.
- 3. Increase by 7 the roots of the equation $3x^4 + 7x^3 15x^2 + x 2 = 0$.
- 4. Determine completely the nature of the roots of the equation $2x^5 x^3 + 10x 8 = 0$.
- 5. Prove that product of two orthogonal matrices is orthogonal.
- 6. Find the eigen values of $\begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & 0 \\ 5 & 6 & 7 \end{pmatrix}$.
- 7. Express $\cos 5\theta$ in terms of $\cos \theta$.
- 8. Prove that $cosh^2x sinh^2x = 1$.
- 9. Prove that $sinh^{-1}x = \log(x + \sqrt{x^2 + 1})$.
- 10. Find log 3.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. If α , β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$ form the equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$.
- 12. Solve $x^4 10x^3 + 26x^2 10x + 1 = 0$.
- 13. If a, b, c be the roots of the equation $x^3 + px^2 + qx + r = 0$ find the equation whose roots are $bc a^2$, $ca b^2$, $ab c^2$.
- 14. Verify Cayley-Hamilton theorem for $\begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$.
- 15. Separate into real and imaginary parts of tan(x + iy).
- 16. Prove that $\frac{\sin 7\theta}{\sin \theta} = 7 56\sin^2\theta + 112\sin^4\theta 64\sin^6\theta.$
- 17. Separate the real and imaginary parts of $(\alpha + i\beta)^{x+iy}$.

SECTION – C ANSWER ANY TWO QUESTIONS

(2X20=40)

- 18. a) Solve the equation $81x^3 18x^2 36x + 8 = 0$ whose roots are in harmonic progression.
 - b) Find the positive root of the equation $x^3 2x^2 3x 4 = 0$ correct to three places of decimals by Horner's method.
- 19. a) Find the eigen values and eigen vectors of the matrix $\begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$.
 - b) Solve $6x^6 25x^5 + 31x^4 31x^2 + 25x 6 = 0$.
- 20. a) Prove that $\cos^5\theta \sin^7\theta = \frac{-1}{2^{11}} [\sin 12\theta + 2\sin 10\theta 4\sin 8\theta + 10\sin 6\theta + 5\sin 4\theta 20\sin 2\theta]$
 - b) If $\tan h \frac{u}{2} = \tan \frac{\theta}{2}$ prove that $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$.
 - c) If tan[log(x + iy)] = a + ib then prove that $tan(log(x^2 + y^2)) = \frac{2a}{1 a^2 b^2}, a^2 + b^2 \neq 0$

(8+7+5)

