STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ ALGEBRA AND TRIGONOMETRY
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

(10X2=20)

ANSWER ALL THE QUESTIONS

1. Solve the equation $x^{3}-12 x^{2}+39 x-28=0$ whose roots are in A.P.
2. If the roots of $x^{3}-12 x^{2}+23 x+36=0$ are $-1,4,9$ find the equation whose roots are $1,-4,-9$.
3. Increase by 7 the roots of the equation $3 x^{4}+7 x^{3}-15 x^{2}+x-2=0$.
4. Determine completely the nature of the roots of the equation $2 x^{5}-x^{3}+10 x-8=0$.
5. Prove that product of two orthogonal matrices is orthogonal.
6. Find the eigen values of $\left(\begin{array}{lll}1 & 2 & 0 \\ 4 & 3 & 0 \\ 5 & 6 & 7\end{array}\right)$.
7. Express $\cos 5 \theta$ interms of $\cos \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Prove that $\sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right.$.
10. Find $\log 3$.

SECTION - B

$(5 X 8=40)$

ANSWER ANY FIVE QUESTIONS

11. If α, β, γ are the roots of the equation $x^{3}+a x^{2}+b x+c=0$ form the equation whose roots are $\alpha \beta, \beta \gamma$ and $\gamma \alpha$.
12. Solve $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
13. If a, b, c be the roots of the equation $x^{3}+p x^{2}+q x+r=0$ find the equation whose roots are $b c-a^{2}, c a-b^{2}, a b-c^{2}$.
14. Verify Cayley-Hamilton theorem for $\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$.
15. Separate into real and imaginary parts of $\tan (x+i y)$.
16. Prove that $\frac{\sin 7 \theta}{\sin \theta}=7-56 \sin ^{2} \theta+112 \sin ^{4} \theta-64 \sin ^{6} \theta$.
17. Separate the real and imaginary parts of $(\alpha+i \beta)^{x+i y}$.

SECTION - C
 ANSWER ANY TWO QUESTIONS

($2 \mathrm{X20}=40$)
18. a) Solve the equation $81 x^{3}-18 x^{2}-36 x+8=0$ whose roots are in harmonic progression.
b) Find the positive root of the equation $x^{3}-2 x^{2}-3 x-4=0$ correct to three places of decimals by Horner's method.
19. a) Find the eigen values and eigen vectors of the matrix $\left(\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right)$.
b) Solve $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$.
20. a) Prove that $\cos ^{5} \theta \sin ^{7} \theta=\frac{-1}{2^{11}}[\sin 12 \theta+2 \sin 10 \theta-4 \sin 8 \theta+10 \sin 6 \theta+$ $5 \sin 4 \theta-20 \sin 2 \theta]$
b) If $\tan h \frac{u}{2}=\tan \frac{\theta}{2}$ prove that $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$.
c) If $\tan [\log (x+i y)]=a+i b$ then prove that

$$
\tan \left(\log \left(x^{2}+y^{2}\right)\right)=\frac{2 a}{1-a^{2}-b^{2}}, a^{2}+b^{2} \neq 0
$$

