STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/ME/NA53

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - ELECTIVE
PAPER	$:$ NUMERICAL ANALYSIS
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A
 ANSWER ALL THE QUESTIONS

(10X2=20)

1. Show that a root of $x^{3}-6 x-13=0$ lies between 3 and 4 .
2. Write a sufficient condition for Gauss-seidel methods to converge.
3. P.T $\Delta^{3} y_{2}=\nabla^{3} y_{5}$.
4. State Gauss forward formula for interpolation.
5. Define numerical differentiation.
6. State Newton's formula to find $\frac{d y}{d x}$ at $x=x_{0}$ using the forward difference operator.
7. State Simpson's $-\frac{3}{8}^{\text {th }}$ Rule.
8. Give the general quadrature formula for define integrals.
9. Write down Euler algorithm to solve the differential equation $\frac{d y}{d x}=f(x, y)$.
10. Write the Runge-Kutta algorithm of second order for solving $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$
11. Find by Newton-Raphson method the real root of $3 x-\cos x-1=0$.
12. Solve by Gauss-Seidel method:

$$
10 x-5 y-2 z=3,4 x-10 y+3 z=-3, x+6 y+10 z=-3
$$

13. Estimate the production for 1964 and 1966 from the following data:

Year	$:$	1961	1962	1963	1964	1965	1966	1967
Production	$:$	200	220	260	-	350	-	430

14. Using Lagrange's interpolation formula, find $y(10)$ from the following table.
```
x : 5 6 6 9 11
y: 12 13 14 16
```

15. Find the value of x for which y is minimum and find the minimum value from the table. $x: \begin{array}{llll}x: 60 & 0.65 & 0.70 & 0.75\end{array}$
$y: 0.62210 .61550 .61380 .6170$
16. Evaluate $\int_{0}^{16} \frac{d x}{1+x^{2}}$ by (i) Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rules.
17. Using Taylor's series method .find the correct to four decimal places, the value of $y(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.

SECTION - C
 ANSWER ANY TWO QUESTIONS

$(2 \times 20=40)$
18. (a) Find the positive root of $x^{3}-x=1$. Correct to four decimal places by bisection method.
(b) Solve by Gauss-Elimination method $3 x+4 y+5 z=18,2 x-y+8 z=13$, $5 x-2 y+7 z=20$.
19. (a) Find the values of y at $x=21$ from the following data:
$x: 20 \quad 23$
26
29
$y: \begin{array}{lllll}y & 0.3420 & 0.3907 & 0.4384 & 0.4848\end{array}$
(b) Find the first two derivatives of $(x)^{\frac{1}{3}}$ at $x=56$ given the table below:

X	$:$	50	51	52	53	54	55
$Y=(x)^{\frac{1}{3}}:$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

20. (a) Evaluate $\int_{-3}^{3} x^{4} d x$ by using (i) Trapezoidal rule
(ii) Simpson's $\frac{1}{3}$ rules.
(b) Apply the $4^{\text {th }}$ order R.K method to find $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1,(h=0.1)$.
