STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE: 11MT/ME/NA53

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	MAJOR – ELECTIVE
PAPER	:	NUMERICAL ANALYSIS
TIME	:	3 HOURS

MAX. MARKS : 100

(10X2=20)

SECTION – A ANSWER ALL THE QUESTIONS

- 1. Show that a root of $x^3 6x 13 = 0$ lies between 3 and 4.
- 2. Write a sufficient condition for Gauss-seidel methods to converge.
- 3. P.T $\Delta^3 y_2 = \nabla^3 y_5$.
- 4. State Gauss forward formula for interpolation.
- 5. Define numerical differentiation.
- 6. State Newton's formula to find $\frac{dy}{dx}$ at $x = x_0$ using the forward difference operator.
- 7. State Simpson's $\frac{3^{th}}{8}$ Rule.
- 8. Give the general quadrature formula for define integrals.
- 9. Write down Euler algorithm to solve the differential equation $\frac{dy}{dx} = f(x, y)$.
- 10. Write the Runge-Kutta algorithm of second order for solving $y' = f(x, y), y(x_0) = y_0$.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. Find by Newton-Raphson method the real root of 3x cosx 1 = 0.
- 12. Solve by Gauss-Seidel method:

10x - 5y - 2z = 3, 4x - 10y + 3z = -3, x + 6y + 10z = -3

13. Estimate the production for 1964 and 1966 from the following data:

Year	:	1961	1962	1963	1964	1965	1966	1967
Production	:	200	220	260	-	350	-	430

14. Using Lagrange's interpolation formula, find y(10) from the following table.

x: 5 6 9 11

y: 12 13 14 16

15. Find the value of x for which y is minimum and find the minimum value from the table.

 $x : 0.60 \quad 0.65 \quad 0.70 \quad 0.75$ $y : 0.6221 \quad 0.6155 \quad 0.6138 \quad 0.6170$ $16. \text{ Evaluate } \int_{0}^{16} \frac{dx}{1+x^2} \text{ by (i) Trapezoidal rule}$

(ii) Simpson's
$$\frac{1}{3}$$
 rules.

17. Using Taylor's series method .find the correct to four decimal places, the value of y(0.1)given $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1.

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

18. (a) Find the positive root of $x^3 - x = 1$. Correct to four decimal places by bisection method.

(b) Solve by Gauss-Elimination method 3x + 4y + 5z = 18, 2x - y + 8z = 13, 5x - 2y + 7z = 20.

19. (a) Find the values of y at x = 21 from the following data:

x: 20 23 26 29 y: 0.3420 0.3907 0.4384 0.4848

(b) Find the first two derivatives of $(x)^{\frac{1}{3}}$ at x = 56 given the table below:

X :50515253545556Y = $(x)^{\frac{1}{3}}$:3.68403.70843.73253.75633.77983.80303.8259

20. (a) Evaluate $\int_{-3}^{3} x^4 dx$ by using (i) Trapezoidal rule

(ii) Simpson's $\frac{1}{3}$ rules.

(b) Apply the 4th order R.K method to find y(0.2) given that y' = x + y, y(0) = 1, (h = 0.1).