## STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

**SUBJECT CODE: 11MT/MC/VA34** 

#### B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS THIRD SEMESTER

**COURSE** : MAJOR – CORE

PAPER : VECTOR ANALYSIS AND ITS APPLICATIONS

TIME : 3 HOURS MAX. MARKS: 100

## SECTION-A Answer All the questions

 $(10 \times 2 = 20)$ 

- 1. If  $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$  and  $r = |\vec{r}|$  then prove that  $\nabla r^n = nr^{n-2}\vec{r}$ .
- 2. Find the unit normal vector to surface  $x^2 + 3y^2 + 2z^2 = 6$  at the point (2,0,1).
- 3. Prove that curl  $\vec{r} = 0$ .
- 4. Show that the vector  $3x^2y\vec{i} 4xy^2\vec{j} + 2xyz\vec{k}$  is solenoidal.
- 5. If  $\vec{F} = xy^2\vec{i} + 2x^2yz\vec{j} 3yz^2\vec{k}$ , find curl  $\vec{F}$  at the point (1, -1, 1).
- 6. If  $\vec{F} = 3xy\vec{\imath} y^2\vec{\jmath}$ , evaluate  $\int_c \vec{F} \cdot d\vec{r}$  where c is the curve on the xy plane  $y = 2x^2$  from (0,0) to (1,2).
- 7. State Frenet Secret Formulae.
- 8. Give the physical significance of div and curl of a vector point function.
- 9. State Stoke's theorem.
- 10. Show that  $\iint_{S} \vec{r} \cdot \vec{n} \, ds = 3V$  where V is the volume enclosed by the closed surface s.

### SECTION-B Answer any FIVE questions

 $(5 \times 8 = 40)$ 

- 11. A particle moves along the curve  $x=t^3+1, y=t^2, z=2t+5$  where t is the time. Find the components of its velocity and acceleration t=1 in the direction  $\vec{t}+\vec{j}+3\vec{k}$
- 12. Find the directional derivative of the function  $\varphi = xy + yz + zx$  in the direction of the vector  $2\vec{\imath} + 3\vec{\jmath} + 6\vec{k}$  at the point (3,1,2).
- 13. Derive the vector identity,  $\nabla \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\nabla \times \vec{u}) \vec{u} \cdot (\nabla \times \vec{v})$ .
- 14. Show that surface  $5x^2 2yz 9x = 0$  and  $4x^2y + z^3 4 = 0$  are orthogonal at (1, -1, 2).

- 15. Find  $\int_C \vec{F} \cdot d\vec{r}$  where  $\vec{F} = (x^2 y^2)i + 2xy\vec{j}$  and c is the square bounded by the co-ordinate axes and the lines x = a and y = a.
- 16. Using divergence theorem, evaluate  $\iint_S \vec{F} \cdot \vec{n} \, ds$  where  $\vec{F} = 4xz\vec{i} y\vec{j} + yz\vec{k}$  and s is the surface of the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, z = 2.
- 17. Find the area of the circle using Green theorem.

# SECTION-C Answer any TWO questions $(2 \times 20 = 40)$

- 18. (a) Find the value of 'a' such that  $\vec{F} = (axy z^2)i + (x^2 + 2yz)\vec{j} + (y^2 axz)\vec{k}$  is irrotational.
  - (b) If  $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$  and  $r = |\vec{r}|$  show that  $\nabla \cdot (r^n \vec{r}) = (n+3)r^n$ .
  - (c) Find the equation of the tangent plane and normal to the surface xyz = 4 at the point (1, 2, 2). (4 + 8 + 8)
- 19. (a) Evaluate  $\iint_S \vec{F} \cdot \vec{n} \, ds$  where  $\vec{F} = 18Z\vec{\imath} 12\vec{\jmath} + 3Y\vec{k}$  and s is the part of the plane 2x + 3y + 6z = 12 which is located in the first quadrant.
  - (b) Verify Green's theorem in the plane for  $\int_c (xy y^2) dx + x^2 dy$  where 'c' is the curve of the region bounded by y = x and  $y = x^2$  (10 + 10)
- 20. (a) Verify Stoke's theorem for  $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$  where s is the half surface of the sphere  $x^2 + y^2 + z^2 = 1$  and c its boundary.
  - (b) State and prove Gauss divergence theorem. (10 + 10)

