STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE: 11MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND ITS APPLICATIONS
TIME : 3 HOURS MAX. MARKS : 100

SECTION-A

Answer All the questions

1. If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $r=|\vec{r}|$ then prove that $\nabla r^{n}=n r^{n-2} \vec{r}$.
2. Find the unit normal vector to surface $x^{2}+3 y^{2}+2 z^{2}=6$ at the point $(2,0,1)$.
3. Prove that curl $\vec{r}=0$.
4. Show that the vector $3 x^{2} y \vec{\imath}-4 x y^{2} \vec{\jmath}+2 x y z \vec{k}$ is solenoidal.
5. If $\vec{F}=x y^{2} \vec{\imath}+2 x^{2} y z \vec{\jmath}-3 y z^{2} \vec{k}$, find curl \vec{F} at the point $(1,-1,1)$.
6. If $\vec{F}=3 x y \vec{\imath}-y^{2} \vec{\jmath}$, evaluate $\int_{c} \vec{F} . d \vec{r}$ where c is the curve on the $x y$ - plane $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
7. State Frenet - Secret Formulae.
8. Give the physical significance of div and curl of a vector point function.
9. State Stoke's theorem.
10. Show that $\iint_{S} \vec{r} \cdot \vec{n} d s=3 V$ where V is the volume enclosed by the closed surface s.

SECTION-B

Answer any FIVE questions
11. A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$ where t is the time. Find the components of its velocity and acceleration $t=1$ in the direction $\vec{\imath}+\vec{\jmath}+3 \vec{k}$
12. Find the directional derivative of the function $\varphi=x y+y z+z x$ in the direction of the vector $2 \vec{\imath}+3 \vec{\jmath}+6 \vec{k}$ at the point $(3,1,2)$.
13. Derive the vector identity, $\nabla \cdot(\vec{u} \times \vec{v})=\vec{v} \cdot(\nabla \times \vec{u})-\vec{u} \cdot(\nabla \times \vec{v})$.
14. Show that surface $5 x^{2}-2 y z-9 x=0$ and $4 x^{2} y+z^{3}-4=0$ are orthogonal at (1, -1, 2).
15. Find $\int_{C} \vec{F}$. $d \vec{r}$ where $\vec{F}=\left(x^{2}-y^{2}\right) i+2 x y \vec{\jmath}$ and c is the square bounded by the co-ordinate axes and the lines $x=a$ and $y=a$.
16. Using divergence theorem, evaluate $\iint_{s} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=4 x z \vec{\imath}-y \vec{\jmath}+y z \vec{k}$ and s is the surface of the cube bounded by the planes
$x=0, x=2, y=0, y=2, z=0, z=2$.
17. Find the area of the circle using Green theorem.

SECTION-C
 Answer any TWO questions

18. (a) Find the value of ' a ' such that $\vec{F}=\left(a x y-z^{2}\right) i+\left(x^{2}+2 y z\right) \vec{\jmath}+\left(y^{2}-a x z\right) \vec{k}$ is irrotational.
(b) If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $r=|\vec{r}|$ show that $\nabla .\left(r^{n} \vec{r}\right)=(n+3) r^{n}$.
(c) Find the equation of the tangent plane and normal to the surface $x y z=4$ at the point $(1,2,2)$.
19. (a) Evaluate $\iint_{s} \vec{F} \cdot \vec{n} d s$ where $\vec{F}=18 Z \vec{\imath}-12 \vec{\jmath}+3 Y \vec{k}$ and s is the part of the plane $2 x+3 y+6 z=12$ which is located in the first quadrant.
(b) Verify Green's theorem in the plane for $\int_{c}\left(x y-y^{2}\right) d x+x^{2} d y$ where ' c ' is the curve of the region bounded by $y=x$ and $y=x^{2}$
20. (a) Verify Stoke's theorem for $\vec{F}=(2 x-y) \vec{\imath}-y z^{2} \vec{\jmath}-y^{2} z \vec{k}$ where s is the half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and c its boundary .
(b) State and prove Gauss divergence theorem.
