STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12 & thereafter)

SUBJECT CODE: 11MT/MC/RA54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: REAL ANALYSIS	5
TIME	: 3 HOURS	

MAX. MARKS : 100

(10X2=20)

SECTION – A ANSWER ALL THE QUESTIONS

- 1. Define limit of a function on the real line.
- 2. Show that the function defined by $f(x) = \frac{\sin x}{x}$, $x \neq 0$

$$f(0) = 1$$

is continuous at x = 0.

- 3. Define open subset of a metric space.
- 4. If *E* is a subset of a metric space *M* and if $x \in M$ is a limit point of *E*, prove that every open ball B(x, r) contains at least one point of *E*.
- Prove that a sequence {x_n} in a metric space (s, d) can converge to atmost one point in S.
- 6. Define complete metric space and give an example.
- 7. Define disconnected metric space.
- 8. State intermediate value theorem for real continuous functions.
- 9. When do we say that f is Riemann Integrable on [a, b].
- 10. Show that differentiability at a point implies continuity at that point.

SECTION – B (5X8=40) ANSWER ANY FIVE QUESTIONS

- 11. If $\lim_{x \to a} f(x) = L$ and if $\lim_{x \to a} g(x) = M$, show that $\lim_{x \to a} f(x) + g(x) = L + M$.
- 12. If \mathcal{F} is any nonempty family of open subsets of a metric space M, show that $\bigcup_{G \in \mathcal{F}} G$ is also an open subset of M.
- 13. If F_1 and F_2 are closed subsets of the metric space show that $F_1 \cup F_2$ is closed.
- 14. In any metric space (S, d), show that every compact subset T is complete.

- 15. Show that a metric space *S* is connected if and only if every two valued function on *S* is constant.
- 16. If $f \in \Re[a, b]$ and a < c < b, show that $f \in \Re[a, c], f \in \Re[c, b]$ and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$
- 17. State and prove the law of the mean.

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

- 18. a) If f is continuous at a, prove that $\lim_{n \to \alpha} x_n = a$ implies $\lim_{n \to \alpha} f(x) = f(a)$.
 - b) If G_1 and G_2 are open subsets of the metric space M, prove that $G_1 \cap G_2$ is also open.
- 19. a) If f is continuous on a compact subset X of S, prove that the image f(x) is a compact subset of T.
 - b) State and prove fixed point theorem for contractions.
- 20. a) State and prove Rolle's theorem.
 - b) State and prove the second fundamental theorem of calculus.