STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE: 11MT/MC/OD34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : MAJOR - CORE

PAPER : ORDINARY DIFFERENTIAL EQUATIONS

TIME MAX. MARKS: 100 : 3 HOURS

SECTION-A Answer All the questions $(10 \times 2 = 20)$

- 1. Solve a(xdy + 2ydx) = xydy.
- 2. Solve $y = (x a)p p^2$.
- 3. Find the complementary function of $(D^2 + 2D + 5)y = xe^x$.
- 4. Find the particular integral of $(D^2 + 4)y = xe^{2x}$.
- 5. Solve the equations $\frac{dx}{vz} = \frac{dy}{xz} = \frac{dz}{xy}$.
- 6. Write the conditions of integrability of equation Pdx + Qdy + Rdz = 0.
- 7. When a circuit is called over damped?
- 8. What is glucose tolerance test?
- 9. Mention some areas in the real world system, where the differential equations are applied.
- 10. Newton's which law is applied in coupled strings?

SECTION-B Answer any FIVE questions $(5 \times 8 = 40)$

- 11. Solve $xp^2 2yp + x = 0$.
- 12. Find the orthogonal trajectories of the cardioids $r = a(1 + cos\theta)$, where a being a parameter.
- 13. Solve $3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$.
- 14. Solve $(D^2 + 2D + 5)y = xe^x$.
- 15. Solve the equation $\frac{dy}{-y^2-z^2} = \frac{dy}{xy} = \frac{dz}{xz}$.
- 16. Find the solution of the second order differential equation $\frac{d^2y}{dt^2} + \omega^2 y = 0$, describing free undamped motion.
- 17. Find the displacements of the two objects in the coupled spring mass system.

SECTION-C Answer any TWO questions

 $(2 \times 20 = 40)$

- 18. a) Solve $p^2 + \left(x + y 2\frac{y}{x}\right)p + xy + \frac{y^2}{x^2} y \frac{y^2}{x} = 0$.
 - b) Solve $(5 + 2x)^2 \frac{d^2y}{dx^2} 6(5 + 2x) \frac{dy}{dx} + 8y = 6x$.
- 19. a) Solve $\frac{d^2y}{dx^2} + y = \sec x$ by the method of variation of parameters.
 - b) Show that equation

$$(x^2y - y^3 - y^2z)dz + (xy^2 - x^2z - x^3)dy + (xy^2 + x^2y)dz = 0$$

satisfies the condition of integrability and solve it.

- 20. a) Derive the equation of forced damping motion.
 - b) Explain the model for expenditure on Arms race by two countries and obtain the solution to the system.

