SUBJECT CODE : 11MT/MC/ME54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

1. State Lamis Theorem.
2. State the Triangle law of forces.
3. Define : friction.
4. Define : Angle of friction.
5. The maximum velocity of a particle executing Simple Harmonic Motion is 1 metre/sec and its period is $\frac{1}{5}$ of a second. Find the amplitude.
6. Define : Simple Harmonic Motion.
7. Prove the relation $g T^{2}=2 R \tan \alpha$, where T is the time of flight, R is the horizontal range and α the angle of projectile.
8. A particle is projected with a velocity of $49 \mathrm{~m} / \mathrm{sec}$, at an elevation of 30°. Find the time of flight.
9. Write the differential equation to a central orbit in (u, θ) form.
10. Define : central force.

SECTION - B

$(5 \times 8=40)$
ANSWER ANY FIVE QUESTIONS
11. The resultant of two forces P and Q acting at an angle θ is R ; that of the forces 2 P and Q acting at the same angle is 2 R and the resultant of forces P and 2 Q acting at $\left(180^{\circ}-\theta\right)$ is $2 R$. Prove that $\mathrm{P}: \mathrm{Q}: \mathrm{R}=\sqrt{6}: \sqrt{2}: \sqrt{5}$.
12. Two like parallel forces P and $Q(P>Q)$ act at points A and B of a rigid body. If P and Q are interchanged, show that the point of the resultant is displaced by $\frac{P-Q}{P+Q} A B$.
13. A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle θ to the line of greatest slope, in a vertical plane through the line of greatest slope. If the body is on the point of moving up the inclined plane, find P if the equilibrium is limiting and λ is the angle of friction.
14. A particle is moving with simple harmonic motion and while moving from the man position to one extreme position its distances at three consecutive seconds are x_{1}, x_{2}, x_{3}. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.
15. Prove that the composition of two Simple Harmonic motions of the same period and in the same straight line is again a Simple Harmonic Motion.
16. Two masses projected from the same point with the same velocity, at elevation of α and β to the horizontal are aimed at a target on the horizontal plane through the point of projection. The first one falls x metres too short of the target while the second one falls y metres beyond the target. If θ is the elevation to hit the target correctly with the same velocity of projection, show that $(x+y) \sin 2 \theta=x \sin 2 \beta+y \sin 2 \alpha$.
17. Find the law of force towards the pole for the orbit $r^{n}=a^{n} \cos n \theta$.

SECTION - C
 ANSWER ANY TWO QUESTIONS

$(2 \times 20=40)$
18. (a) State and prove Varignons Theorem.
(b) A string ABCD hangs from fixed points A, D carrying a weight of 12 kgm at B and a weight W at C . AB is inclined at 60° to the horizontal; BC is horizontal and CD is inclined at 30° to the horizontal. Find W. $(10+10)$
19. (a) A ladder rests in limiting equilibrium with its lower end on a rough horizontal plane and the other end against a rough vertical wall. The centre of gravity divides the ladder into two portions of lengths a and b . Find the position of limiting equilibrium.
(b) A particle falls under gravity in a medium whose resistance varies as the square of the velocity. Discuss the motion.
20. (a) Prove that the path of a projectile is a parabola.
(b) Derive the differential equation of a central orbit in $\mathrm{p}-\mathrm{r}$ form.

$$
(10+10)
$$

alacaal

