STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15MT/MC/DC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER
 PAPER : DIFFERENTIAL CALCULUS

COURSE : MAJOR - CORE

SECTION - A
 ANSWER ALL THE QUESTIONS

(10X2=20)

1. Find the nth derivative of $\sin (a x+b)$.
2. If $y=\operatorname{acos}(\log x)+b \sin (\log x)$, Prove that $x^{2} y_{2}+x y_{1}+y=0$.
3. Define Envelope of the family of curves C.
4. State the equation of the envelope when, $f(x, y, t)=0$ is a quadratic in t.
5. Write the Cartesian formula for the radius of curvature.
6. Find the co-ordinates of the centre of curvature of the curve $y=x^{2}$ at the point ($1 / 2,1 / 4$).
7. Write the pedal equation of a curve.
8. Derive chord of curvature parallel to x-axis.
9. Define maxima and minima of functions of two variables.
10. When do you say a curve is symmetrical about the x axis? Give example.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

(5X8=40)
11. Find the nth derivative of $e^{3 x} \sin x \sin 2 x \sin 3 x$.
12. If $=x^{2} e^{x}$, show that $y_{n}=\frac{1}{2} n(n-1) y_{2}-n(n-2) y_{1}+\frac{1}{2}(n-1)(n-2) y$.
13. Find the envelope of the family of straight lines $+t x=2 a t+a t^{3}$, the parameter being t.
14. Show that the radius of curvature at any point of the catenary $y=c \cosh \frac{x}{c}$ is equal to the length of the portion of the normal intercepted between the curve and the axis of x.
15. Find ρ at the point t^{\prime} of the curve $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$.
16. Prove that $(p-r)$ equation of the cardioid $r=a(1-\cos \theta)$ is $p^{2}=\frac{r^{3}}{2 a}$.
17. Find the maximum or minimum values of $2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$.

SECTION - C
 ANSWER ANY TWO QUESTIONS

($2 \mathrm{X20}=40$)
18. (a) If $y^{1 / m}+y^{-1 / m}=2 x$, prove that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
(b) If $\mathrm{y}=\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}$, show that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+n^{2} y_{n}=0$.
(c) Find the envelope of the family of curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{K^{2}-a^{2}}=1$, where a is a parameter.
19. (a) Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ is $4 \operatorname{acos} \frac{\theta}{2}$.
(b) Show that the evaluate of the cycloid $x=a(\theta-\sin \theta)$ and $y=a(1-\cos \theta)$ is another Cycloid.
20. (a) Find the extreme values of the function $f(x, y)=x^{2}+y$ on the circle $x^{2}+y^{2}=1$.
(b) Trace the curve $y=(x-1)(x-2)(x-3)$.

ahalahala

