STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE: 11MT/MC/AS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR – CORE

PAPER : ALGEBRAIC STRUCTURES

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

Answer all questions:

 $(10 \times 2 = 20)$

- 1. Prove that the identity element of a group is unique.
- 2. Prove that the intersection of two subgroups of a group is a subgroup of the group.
- 3. Prove that any subgroup of an abelian group is normal.
- 4. If $\varphi: G \to G'$ is a homomorphism of groups, prove that $\varphi(e) = e'$, where e and e' are respectively the identity elements of G and G'.
- 5. What is the number of automorphisms of the group { 1, -1. i, -i} under multiplication.
- 6. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ as the product of disjoint cycles.
- 7. Prove that any field is an integral domain.
- 8. Define an integral domain and give an example of a ring which is not an integral domain.
- 9. Define a maximal ideal of a ring.
- 10. If U is an ideal of a ring R and if $1 \in U$, prove that U = R.

SECTION - B

Answer any five questions:

 $(5 \times 8 = 40)$

- 11. State and prove the necessary and sufficient conditions for a subset H of a group G to be a subgroup of G.
- 12. If $\varphi: G \to G'$ is a homomorphism of groups, prove that the kernel of φ is a normal subgroup of G.
- 13. Find the set of automorphism of an infinite cyclic group.
- 14. Prove that a finite integral domain is a field.

- 15. Let R be a commutative ring with unit element and M is an ideal of R. Prove that M is a maximal ideal of R if and only R/M is a field.
- 16. If *G* is a group and if *H* is a subgroup of *H* of index 2 in *G*, prove that *H* is a normal subgroup of *G*.
- 17. Prove that the set A_n of even permutations on n symbols is a normal subgroup of the symmetric group of S_n .

SECTION - C

Answer any two questions:

 $(2 \times 20 = 40)$

- 18. (a) Let G = J be the group of integers under usual addition and H = 5J be the subgroup of G consisting of all integers which are multiples of G. Write down the right cosets of G in G. Is the set of right cosets of G in G a group? Give reasons.
 - (b) If G is a group of even order, prove that there exists an element $a \neq e$ in G such that $a^2 = e$.
 - (c) State and prove Lagrange's theorem on finite groups. (5+5+10)
- 19. (a) State and prove Cayley's theorem.
 - (b) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field. (10 + 10)
- 20. (a) Prove that any integral domain can be imbedded in a field.
 - (b) Give an example of division ring which is not a field. (15 + 5)

