STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/MC/AS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE : MAJOR - CORE
PAPER : ALGEBRAIC STRUCTURES
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

Answer all questions:
($10 \times 2=20$)

1. Prove that the identity element of a group is unique.
2. Prove that the intersection of two subgroups of a group is a subgroup of the group.
3. Prove that any subgroup of an abelian group is normal.
4. If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of groups, prove that $\varphi(e)=e^{\prime}$, where e and e^{\prime} are respectively the identity elements of G and G^{\prime}.
5. What is the number of automorphisms of the group $\{1,-1 . i,-i\}$ under multiplication.
6. Express the permutation $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$ as the product of disjoint cycles.
7. Prove that any field is an integral domain.
8. Define an integral domain and give an example of a ring which is not an integral domain.
9. Define a maximal ideal of a ring.
10. If U is an ideal of a ring R and if $1 \in U$, prove that $U=R$.
SECTION - B

Answer any five questions:
($5 \times 8=40$)
11. State and prove the necessary and sufficient conditions for a subset H of a group G to be a subgroup of G.
12. If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of groups, prove that the kernel of φ is a normal subgroup of G.
13. Find the set of automorphism of an infinite cyclic group.
14. Prove that a finite integral domain is a field.

15 . Let R be a commutative ring with unit element and M is an ideal of R. Prove that M is a maximal ideal of R if and only R / M is a field.
16. If G is a group and if H is a subgroup of H of index 2 in G, prove that H is a normal subgroup of G.
17. Prove that the set A_{n} of even permutations on n symbols is a normal subgroup of the symmetric group of S_{n}.

SECTION - C

Answer any two questions:
18. (a) Let $G=J$ be the group of integers under usual addition and $H=5 J$ be the subgroup of G consisting of all integers which are multiples of 5 . Write down the right cosets of H in G. Is the set of right cosets of H in G a group? Give reasons.
(b) If G is a group of even order, prove that there exists an element $a \neq e$ in G such that $a^{2}=e$.
(c) State and prove Lagrange's theorem on finite groups.
19. (a) State and prove Cayley's theorem.
(b) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field.
20. (a) Prove that any integral domain can be imbedded in a field.
(b) Give an example of division ring which is not a field.

