STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/AC/MT34

B. Com. DEGREE EXAMINATION, NOVEMBER 2015

THIRD SEMESTER
COURSE : ALLIED - CORE
PAPER : MATHEMATICS FOR COMMERCE
MAX. MARKS : 100

SECTION - A
 ANSWER ALL THE QUESTIONS

1. Prove that $\left(\begin{array}{cc}1 / \sqrt{2} & -i / \sqrt{2} \\ -i / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$ is a unitary matrix.
2. Find the characteristic equation of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right)$.
3. Write the other roots of a biquadratic equation given that one of its roots is $\sqrt{2}+\sqrt{3}$.
4. Show that $x^{9}+x^{8}+x+1=0$ is a reciprocal equation.
5. Define interpolation.
6. When do we use Newton's backward difference formula for interpolation?
7. Find $\frac{d y}{d x}$ where $y=\sin ^{-1}\left(x^{2}\right)$.
8. Find $\frac{d y}{d x}$ where $x=a \cos \theta$ and $y=b \sin \theta$.
9. Integrate $e^{\sin x+\cos x}(\cos x-\sin x)$ with respect to x.
10. Integrate $x^{n-1} \sin \left(x^{n}\right)$ with respect to x.

SECTION - B
 $(5 \times 8=40)$
 ANSWER ANY FIVE QUESTIONS

11. Show that every square matrix can be uniquely expressed as a sum of a Hermitian and a skew-Hermitian matrix.
12. Verify Caley-Hamilton theorem for the matrix $\left(\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$.
13. Solve the equation $x^{3}-12 x^{2}+39 x-28=0$ given that its roots are in arithmetic progression.
14. Solve the equation $6 x^{4}-13 x^{3}-35 x^{2}-x+3=0$ given that $2-\sqrt{3}$ is one of its roots.
15. Form the difference table and interpolate $f(x)$ when $x=4$ given

$$
\begin{array}{ccccc}
x: & 3 & 5 & 7 & 9 \\
f(x): & 180 & 150 & 120 & 90
\end{array}
$$

16. If $=a(\cos \theta+\log \tan \theta / 2), y=a \sin \theta$, then find $\frac{d y}{d x}$.
17. Integrate (i) $\frac{1}{9-16 x^{2}}$ and (ii) $\frac{x^{3}}{\sqrt{1-x^{8}}}$ with respect to x.

SECTION - C
 ANSWER ANY TWO QUESTIONS

$(2 \times 20=40)$
18. (a) Find the Eigen values and Eigen vectors of the matrix $\left(\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right)$.
(b) Solve the reciprocal equation $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
19. (a) Using Lagranges interpolation method find the value of y when $x=2$ from the following data.

x	$:$	0	3	5	6	8
y	$:$	276	460	414	343	110

(b) If $(\sin x)^{\cos y}=(\sin y)^{\cos x}$, then find $\frac{d y}{d x}$.
20. (a) Integrate (i) $\frac{1}{\sqrt{3 x^{2}+x-2}}$ and (ii) $(\log x)^{2}$ with respect to x .
(b) Write the matrix $\left(\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right)$ as the sum of a symmetric and a skew-symmetric matrices.

