STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE: 11MT/AC/MT34

B. Com. DEGREE EXAMINATION, NOVEMBER 2015 THIRD SEMESTER

COURSE : ALLIED - CORE

PAPER : MATHEMATICS FOR COMMERCE

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A $(10 \times 2 = 20)$ ANSWER ALL THE QUESTIONS

- 1. Prove that $\begin{pmatrix} 1/\sqrt{2} & -i/\sqrt{2} \\ -i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$ is a unitary matrix.
- 2. Find the characteristic equation of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$.
- 3. Write the other roots of a biquadratic equation given that one of its roots is $\sqrt{2} + \sqrt{3}$.
- 4. Show that $x^9 + x^8 + x + 1 = 0$ is a reciprocal equation.
- 5. Define interpolation.
- 6. When do we use Newton's backward difference formula for interpolation?
- 7. Find $\frac{dy}{dx}$ where $y = sin^{-1}(x^2)$. 8. Find $\frac{dy}{dx}$ where $x = acos\theta$ and $y = bsin\theta$. 9. Integrate $e^{sinx + cosx}(\cos x \sin x)$ with respect to x.
- 10. Integrate $x^{n-1}sin(x^n)$ with respect to x.

SECTION – B $(5 \times 8 = 40)$ **ANSWER ANY FIVE QUESTIONS**

- 11. Show that every square matrix can be uniquely expressed as a sum of a Hermitian and a skew-Hermitian matrix.
- a skew-Hermitian matrix.

 12. Verify Caley-Hamilton theorem for the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.
- 13. Solve the equation $x^3 12x^2 + 39x 28 = 0$ given that its roots are in arithmetic progression.
- 14. Solve the equation $6x^4 13x^3 35x^2 x + 3 = 0$ given that $2 \sqrt{3}$ is one of its
- 15. Form the difference table and interpolate f(x) when x = 4 given

$$x : 3 5 7 9$$

 $f(x) : 180 150 120 90$

- 16. If $= a(\cos\theta + \log \tan \theta/2)$, $y = a\sin\theta$, then find $\frac{dy}{dx}$.
- 17. Integrate (i) $\frac{1}{9-16x^2}$ and (ii) $\frac{x^3}{\sqrt{1-x^8}}$ with respect to x.

SECTION - C ANSWER ANY TWO QUESTIONS

 $(2 \times 20 = 40)$

18. (a) Find the Eigen values and Eigen vectors of the matrix $\begin{pmatrix} 8 & -4 \\ 2 & 2 \end{pmatrix}$. (b) Solve the reciprocal equation $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$.

- 19. (a) Using Lagranges interpolation method find the value of y when x = 2 from the following data.

x : 0 3 5 6 8y : 276 460 414 343 110

- (b) If $(\sin x)^{\cos y} = (\sin y)^{\cos x}$, then find $\frac{dy}{dx}$.
- 20. (a) Integrate (i) $\frac{1}{\sqrt{3x^2+x-2}}$ and (ii) $(log x)^2$ with respect to x.
 - (b) Write the matrix $\begin{pmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{pmatrix}$ as the sum of a symmetric and a skew-symmetric matrices.
