M. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : ELECTIVE
PAPER : NUMBER THEORY AND CRYPTOGRAPHY
TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Using Euclidean Algorithm, find g.c.d. (1547,560).
2. If $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{m}$ and $c \equiv d \bmod m$ then prove that $a \pm c \equiv b \pm d \bmod m$.
3. Define the Legendre symbol.
4. Find the inverse of $A=\left(\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right) \in M_{2}(Z / 26 Z)$.
5. Define a Carmichael number.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Estimate the time required to convert a k-bit integer to its representation in the base 10 .
7. If b is prime to m, and a and c are positive integers and if $b^{a} \equiv 1 \bmod m$ and $b^{c} \equiv 1 \bmod m$ and if $d=g . c . d .(a, c)$, prove that $b^{d} \equiv 1 \operatorname{modm}$.
8. Show that the order of any $a \in F_{q}{ }^{*}$ divides $q-1$.
9. Imagine our adversary is using a 2×2 enciphering matrix with a $29-$ letter alphabet where $\mathrm{A}-\mathrm{Z}$ have the numerical equivalents , blank $=26, ?=27,!=28$. Also a digraph DP and LW corresponds to the plaintext digraphs AR and LA respectively. Form a matrix from AR and LA and decipher the message " GFPYJP X?UYXSTLADPLW".
10. Using frequency analysis, decipher the message "FQOCUDEM" and U in the cipher text is the encryption of E .
11. Show that a Carmichael number must be the product of at least three distinct primes.
12. Factor 4087 using $f(x)=x^{2}+x+1$ and $x_{0}=2$.

SECTION - C

ANSWER ANY THREE QUESTIONS:

13. (a) Divide (HAPPY) $)_{26}$ by (SAD $)_{26}$.
(b) Find an upper bound for the number of bit operations required to compute n !.
(c) Prove that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps . Also verify Time (finding g.c.d. $(\mathrm{a}, \mathrm{b}))=\mathrm{O}\left(\log ^{3}(\mathrm{a})\right)$.
$(4+6+10)$
14. (a) State and prove Chinese remainder theorem and hence show that the Euler phi function is multiplicative.
(b) State and prove Fermat's Little theorem.
15. (a) Show that every finite field has a generator. If g is a generator of $F_{q}{ }^{*}$, then g^{j} is also a generator if and only if g.c.d. $(j, q-1)=1$. In particular prove that there are a total of $\varphi(q-1)$ different generators of $F_{q}{ }^{*}$.
(b) Prove $(a+b)^{p}=a^{p}+b^{p}$ in any field of characteristic p.
16. (a) Solve the following systems of simultaneous congruences.

$$
\begin{aligned}
& 2 x+3 y \equiv 1 \bmod 26 \\
& 7 x+8 y \equiv 2 \bmod 26
\end{aligned}
$$

(b) Explain in detail about affine cryptosystem for enciphering and deciphering with suitable examples.
17. (a) Discuss (i) Classical Cryptography versus Public key (ii) Authentication in Public key Cryptography.
(b) Explain how signature can be sent in RSA.

