STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE: 15MT/PE/NC14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	ELECTIVE		
PAPER	:	NUMBER THEORY AND CRYPTOGRAPH	Y	
TIME	:	3 HOURS	MAX. MARKS :	100

SECTION – A

ANSWER ALL THE QUESTIONS:

- 1. Using Euclidean Algorithm, find g.c.d. (1547, 560).
- 2. If $a \equiv b \mod m$ and $c \equiv d \mod m$ then prove that $a \pm c \equiv b \pm d \mod m$.
- 3. Define the Legendre symbol.

- 4. Find the inverse of $A = \begin{pmatrix} 2 & 3 \\ 7 & 8 \end{pmatrix} \in M_2(\mathbb{Z}/26\mathbb{Z}).$
- 5. Define a Carmichael number.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

 $(5 \times 2 = 10)$

- 6. Estimate the time required to convert a k-bit integer to its representation in the base 10.
- 7. If *b* is prime to *m*, and *a* and *c* are positive integers and if $b^a \equiv 1 \mod m$ and $b^c \equiv 1 \mod m$ and if d = g.c.d.(a,c), prove that $b^d \equiv 1 \mod m$.
- 8. Show that the order of any $a \in F_q^*$ divides q 1.
- 9. Imagine our adversary is using a 2×2 enciphering matrix with a 29 letter alphabet where A – Z have the numerical equivalents, blank = 26, ? = 27, ! = 28. Also a digraph DP and LW corresponds to the plaintext digraphs AR and LA respectively. Form a matrix from AR and LA and decipher the message "GFPYJP X?UYXSTLADPLW".
- 10. Using frequency analysis, decipher the message "FQOCUDEM" and U in the cipher text is the encryption of E.
- 11. Show that a Carmichael number must be the product of at least three distinct primes.
- 12. Factor 4087 using $f(x) = x^2 + x + 1$ and $x_0 = 2$.

SECTION - C

ANSWER ANY THREE QUESTIONS:

$(3 \times 20 = 60)$

- 13. (a) Divide $(HAPPY)_{26}$ by $(SAD)_{26}$.
 - (b) Find an upper bound for the number of bit operations required to compute n!.
 - (c) Prove that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps . Also verify Time (finding g.c.d.(a,b)) = O (log³ (a)).

$$(4+6+10)$$

- 14. (a) State and prove Chinese remainder theorem and hence show that the Euler phi function is multiplicative.
 - (b) State and prove Fermat's Little theorem. (14+6)
- 15. (a) Show that every finite field has a generator. If g is a generator of F_q^* , then g^j is also a generator if and only if g.c.d. (j, q 1) = 1. In particular prove that there are a total of $\varphi(q 1)$ different generators of F_q^* .
 - (b) Prove $(a + b)^p = a^p + b^p$ in any field of characteristic p. (14+6)
- 16. (a) Solve the following systems of simultaneous congruences.

 $2x + 3y \equiv 1 \mod 26$ $7x + 8y \equiv 2 \mod 26$

- (b) Explain in detail about affine cryptosystem for enciphering and deciphering with suitable examples. (10+10)
- 17. (a) Discuss (i) Classical Cryptography versus Public key (ii) Authentication in Public key Cryptography.
 - (b) Explain how signature can be sent in RSA. (12+8)