STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2015 – 16)

SUBJECT CODE: 15MT/PC/RA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : CORE

PAPER : REAL ANALYSIS

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A (5 X 2 = 10)

ANSWER ALL QUESTIONS

- 1. Define accumulation point. What is the accumulation point of the set $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$?
- 2. Show that $\sum_{1}^{\infty} (-1)^{(n-1)}$ is (C,1) summable.
- 3. State Weierstrass M-test.
- 4. Define linear function. If \vec{f} is linear show that $\vec{f}'(\vec{c};\vec{x}) = \vec{f}(\vec{x})$.
- 5. Find the saddle points of the function $f(x, y) = (y x^2)(y 2x^2)$.

SECTION - B (5 X 6 = 30)

ANSWER ANY FIVE OUESTIONS

- 6. Prove that every point of a non empty open set *S* belongs to one and only one component interval of *S* .
- 7. Prove that a set S in \mathbb{R}^n is closed if and only if it contains all its adherent points.
- 8. Given $f(p,q) = \frac{pq}{p^2 + q^2}$, find the double limit and the iterated limit if it exists.
- 9. Assume that $\{f_n\}$ converges uniformly to f on S. If each f_n is continuous at a point c of S the prove that the limit of the function f is also continuous at c.
- 10. Let S be an open connected subset of R^n . Let $\overrightarrow{f}: S \to R^n$ be differentiable at each point of S. If $\overrightarrow{f}(\overrightarrow{c}) = 0$, $\forall \overrightarrow{c} \in S$ then prove that \overrightarrow{f} is a constant on S.
- 11. State and prove Taylor's formula from R^n to R^1 .
- 12. Let A be an open subset of R^n and assume that $\overrightarrow{f}: A \to R^n$ is continuous and has finite partial derivative $D_j f_i$ on A. If \overrightarrow{f} is one to one on A and if $\overrightarrow{J}_{\overrightarrow{f}}(\overrightarrow{x}) \neq 0, \forall x \in A$, then prove that $\overrightarrow{f}(A)$ open.

SECTION - C

 $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. a) State and prove Cantor intersection theorem.
 - b) Assume $A \subseteq \mathbb{R}^n$ and F be an open covering of A. Then prove that there is a countable sub covering of F which also covers A.

(10+10)

- 14. a) State and Prove Merten's theorem.
 - b) State and prove Cauchy condition for convergence of products.

(10+10)

- 15. a) Define pointwise convergence and uniform convergence of functions. Does pointwise convergence implies uniform convergence. Justify your answer.
 - b) State and Prove Bernstein's theorem.

(8+12)

- 16. a) Assume that one of the partial derivatives $D_1 \vec{f}, D_2 \vec{f}, D_3 \vec{f}, \dots, D_n \vec{f}$ exists at \vec{c} and that the remaining (n-1) derivatives exist in some ball $B(\vec{c})$ and are continuous at \vec{c} , then prove that \vec{f} is differentiable at \vec{c} .
 - b) If both the partial derivatives $D_r \vec{f}$ and $D_k \vec{f}$ exist in an n-ball $B(\vec{c}; \delta)$ and if both are differentiable at \vec{c} , then prove that $D_{k,r} \vec{f}(\vec{c}) = D_{r,k} \vec{f}(\vec{c})$.

(12+8)

17. State and prove Inverse function theorem.

