STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15MT/PC/DE14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : DIFFERENTIAL EQUATIONS TIME : 3 HOURS

MAX. MARKS : 100

$(5 \times 2=10)$

ANSWER ALL QUESTIONS

1. Check whether the functions $x_{1}(t)=e^{i \alpha t}, x_{2}(t)=\sin \alpha t, x_{3}(t)=\cos \alpha t$ are linearly dependent on $-\infty<t<\infty$.
2. State Lipschitz condition.
3. Write the auxillary equations of Charpit's method.
4. Define boundary value problems.
5. Write down the Laplace's equation in two dimensional polar coordinates.

SECTION - B

$(5 \times 6=30)$

ANSWER ANY FIVE QUESTIONS

6. If $x_{1}(t)$ and $x_{2}(t)$ are linearly independent solutions of the equation $L(x)=0$ on I, then prove that the Wronskian $W\left[x_{1}(t), x_{2}(t)\right]$ of $x_{1}(t)$ and $x_{2}(t)$ is never zero on I.
7. If $P_{m}(t)$ and $P_{n}(t)$ are Legendre polynomials, then prove that $\int_{-1}^{+1} P_{m}(t) P_{n}(t) \mathrm{dt}=0$ if $m \neq n$.
8. Solve the initial value problem $x^{\prime}=x, x(0)=1, t \geq 0$ by the method of successive approximation.
9. Solve the equation $p x+q y+p q=0$ by Charpits method.
10. Obtain the general solution of heat flow equation $k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ by the method of separation of variables.
11. Obtain a solution of Laplace equation in rectangular Cartesian coordinates (x, y, z) by the method of separation of variables.
12. State and prove Gronwall inequality.

SECTION - C

$(3 \times 20=60)$

ANSWER ANY THREE QUESTIONS

13. a) Prove that $t^{\frac{1}{2}} J_{\frac{1}{2}}(t)=\frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \sin t$ and that $t^{\frac{1}{2}} J_{-\frac{1}{2}}(t)=\frac{\sqrt{2}}{\Gamma\left(\frac{1}{2}\right)} \cos t$.
b) Solve the Legendre equation $\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+p(p+1) x=0$, when p is a real number.
14. a) State and prove Picard's theorem for initial value problems.
b) Solve the boundary value problem $x^{\prime \prime}+\lambda x=0, x(0)=0, x^{\prime}(1)=0$.
15. a) Find the complete integral of $p^{2} x+q^{2} y-z=0$.
b) Derive one dimensional wave equation.
16. a) Obtain the solution of the two dimensional heat equation $\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y 2}=\frac{1}{k} \frac{\partial \theta}{\partial t}$.
b) Solve by the method of separation of variables: $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$.
17. a) Solve the differential equation $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$ subject to the boundary conditions i) u is finite when $\mathrm{r} \rightarrow 0 \quad$ ii) $u=\sum C_{n} \cos n \theta$ when $r=a$.
b) State and prove Dirichlet problem on harmonic functions.

acalacacaa

