SUBJECT CODE : 15MT/PC/CM14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE : CORE
PAPER : CONTINUUM MECHANICS TIME : 3 HOURS

SECTION - A
MAX. MARKS : 100
$(5 \times 2=10)$

ANSWER ALL THE QUESTIONS

1. Define isotropic.
2. The Lagrangian description of a deformation is given by $x_{1}=X_{1}+X_{3}\left(e^{2}-1\right)$, $x_{2}=X_{2}+X_{3}\left(e^{2}-e^{-2}\right), x_{3}=X_{3}$. Determine the Eulerian equation describing the motion.
3. Define steady motion.
4. Show that the material form $d(\rho J) / d t=0$ of the continuity equation and the spatial form $d \rho / d t+\rho V_{u, u}=0$ are equivalent.
5. Define orthotropic.

> SECTION - B
$(5 \times 6=30)$

ANSWER ANY FIVE QUESTIONS

6. Show that the deviator stress tensor is equivalent to the superposition of five simple shear states.
7. Obtain the three Lagrangian strain invariants.
8. A continuum under goes deformation $x_{1}=X_{1}, x_{2}=X_{2}+A X_{3}, x_{3}=X_{3}+A X_{2}$ where A is a constant. Compute the deformation tensor G and use this to determine the Lagrangian finite strain Tensor L_{G}.
9. Show that the rate of deformation tensor is the material derivative of the Eulerian linear strain tensor.
10. A velocity field is given by $v_{1}=4 x_{3}-3 x_{2}, v_{2}=3 x_{1}, v_{3}=-4 x_{1}$. Determine the acceleration components at $P(b, 0,0)$ and $Q(0,4 b, 3 b)$.
11. Discuss Angular Momentum principle.
12. Obtain the generalized Hook's law.

SECTION - C

ANSWER ANY THREE QUESTIONS

13. The stress tensor values at a point P are given by the array

$$
\varepsilon=\left(\begin{array}{ccc}
7 & 0 & -2 \\
0 & 5 & 0 \\
-2 & 0 & 4
\end{array}\right)
$$

(i) Determine the traction vector on the plane at P where unit normal is $\hat{n}=(2 / 3) \hat{e}_{1}-(2 / 3) \hat{e}_{2}+(1 / 3) \hat{e}_{3}$
(ii) The component perpendicular to the plane
(iii) The magnitude of $\begin{gathered}(\hat{n}) \\ t_{i}\end{gathered}$.
(iv) The angle between $\begin{gathered}(\hat{n}) \\ t_{i}\end{gathered}$ and \hat{n}.
14. Obtain Lagrangian finite strain tensor and Eulerian finite strain tensor. Also obtain Cauchy's and Green's deformation tensor.
15. A velocity field is described by $v_{1}=x_{1} /(1+t), \quad v_{2}=2 x_{2} /(1+t)$, $v_{3}=3 x_{3} /(1+t)$. Determine the acceleration components for the motion and obtain the displacement relations $x_{i}=x_{i}(\vec{X}, t)$ are also from these determine the acceleration components in Lagrangian form for the motion.
16. In a two dimensional incompressible steady flow $v_{1}=-A x_{2} / r^{2}$ where $r^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}$. Determine v_{2} if $v_{2}=0$ at $x_{1}=0$ for all x_{2}. Show that the motion is irrotational and that the streamlines are circles.
17. a) Derive Hook's Law for an isotropic body in terms of Lame's constants λ and μ.
b) With usual notations obtain ($C_{K M}$) where $x_{1} x_{2}$ plane is one of elastic symmetry, under the transformation $x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}, x_{3}^{\prime}=x_{3}$.

