STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted during the academic year 2015 – 16)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015 **BRANCH I - MATHEMATICS** FIRST SEMESTER

COURSE : CORE

: CONTINUUM MECHANICS **PAPER**

TIME : 3 HOURS MAX. MARKS: 100

SECTION – A

(5 X 2 = 10)

SUBJECT CODE: 15MT/PC/CM14

ANSWER ALL THE QUESTIONS

- 1. Define isotropic.
- 2. The Lagrangian description of a deformation is given by $x_1 = X_1 + X_3(e^2 1)$, $x_2 = X_2 + X_3(e^2 - e^{-2}), x_3 = X_3$. Determine the Eulerian equation describing the motion.
- 3. Define steady motion.
- 4. Show that the material form $d(\rho I)/dt = 0$ of the continuity equation and the spatial form $d\rho/dt + \rho V_{u,u} = 0$ are equivalent.
- 5. Define orthotropic.

SECTION - B

 $(5 \times 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. Show that the deviator stress tensor is equivalent to the superposition of five simple shear states.
- 7. Obtain the three Lagrangian strain invariants.
- 8. A continuum under goes deformation $x_1 = X_1$, $x_2 = X_2 + AX_3$, $x_3 = X_3 + AX_2$ where A is a constant. Compute the deformation tensor G and use this to determine the Lagrangian finite strain Tensor L_G .
- 9. Show that the rate of deformation tensor is the material derivative of the Eulerian linear strain tensor.
- 10. A velocity field is given by $v_1 = 4x_3 3x_2$, $v_2 = 3x_1$, $v_3 = -4x_1$. Determine the acceleration components at P(b, 0,0) and Q(0,4b,3b).
- 11. Discuss Angular Momentum principle.
- 12. Obtain the generalized Hook's law.

 $(3 \times 20 = 60)$

SECTION - C

ANSWER ANY THREE QUESTIONS

13. The stress tensor values at a point P are given by the array

$$\varepsilon = \begin{pmatrix} 7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$

- (i) Determine the traction vector on the plane at P where unit normal is $\hat{n} = (2/3)\hat{e}_1 - (2/3)\hat{e}_2 + (1/3)\hat{e}_3$ (ii) The component perpendicular to the plane

- (iii) The magnitude of $\begin{pmatrix} \hat{n} \\ t_i \end{pmatrix}$. (iv) The angle between $\begin{pmatrix} \hat{n} \\ t_i \end{pmatrix}$ and \hat{n} .
- 14. Obtain Lagrangian finite strain tensor and Eulerian finite strain tensor. Also obtain Cauchy's and Green's deformation tensor.
- 15. A velocity field is described by $v_1 = x_1/(1+t)$, $v_2 = 2x_2/(1+t)$, $v_3 = 3x_3/(1+t)$. Determine the acceleration components for the motion and obtain the displacement relations $x_i = x_i(\vec{X}, t)$ are also from these determine the acceleration components in Lagrangian form for the motion.
- 16. In a two dimensional incompressible steady flow $v_1 = -Ax_2/r^2$ where $r^2 = x_1^2 + x_2^2$. Determine v_2 if $v_2 = 0$ at $x_1 = 0$ for all x_2 . Show that the motion is irrotational and that the streamlines are circles.
- 17. a) Derive Hook's Law for an isotropic body in terms of Lame's constants λ and μ .
 - b) With usual notations obtain (C_{KM}) where x_1x_2 plane is one of elastic symmetry, under the transformation $x'_1 = x_1$, $x'_2 = x_2$, $x'_3 = x_3$.

