STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2015-16)
SUBJECT CODE : 15MT/PC/MA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	:
CORE	
PAPER	$:$ MODERN ALGEBRA
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Does there exist a non-abelian group of order 169 ? Justify your answer.
2. Define an Euclidean ring.
3. If p is a prime number, show that the polynomial $x^{n}-p$ is irreducible over the field of rational numbers.
4. Is $Q(e)$ a finite extension of Q, where Q is the field of rational numbers?
5. Is the symmetric group S_{3} solvable? Give reasons for your answer.

SECTION - B
 ANSWER ANY FIVE QUESTIONS:

6. Prove that any two p-Sylow subgroups of a finite group G are conjugates.
7. Let R be an integral domain. Prove that any two elements a and b in R have greatest common divisor d and it is of the form $d=\lambda a+\mu b$, for some λ and μ in R.
8. If $f(x)$ and $g(x)$ are primitive polynomials, prove that $f(x) g(x)$ is also a primitive polynomial.
9. If $a, b \in K$ are algebraic over F of degrees m and n respectively, and if m and n are relatively prime, prove that $F(a, b)$ is of degree $m n$ over F.
10. Prove that a group G is solvable if and only if $G^{(k)}=(e)$ for some k.
11. Let G be a group and suppose that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{n}$. Let $T=N_{1} \times N_{2} \times \ldots \times N_{n}$. Prove that the groups G and T are isomorphic.
12. Prove that a polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f^{\prime}(x)$ have a non-trivial common factor.

SECTION - C

ANSWER ANY THREE QUESTIONS:
 $(3 \times 20=60)$

13. Prove that every finite abelian group is the direct product of cyclic groups.
14. (a) Prove that an ideal $A=\left(a_{0}\right)$ is a maximal ideal of the Euclidean ring R if and only if $\left(a_{0}\right)$ is a prime element of R.
(b) Prove that the ring if Gaussian integers is a Euclidean ring.
15. (a) State and prove the Eisenstein criterion about the irreducibility of a polynomial with integer coefficients.
(b) State and prove the division algorithm of polynomials over a field F.
16. Prove that the number e is transcendental.
17. Prove that K is a normal extension of F if and only if K is the splitting field of some polynomial over F.

acacalacal

