STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12 & thereafter)

SUBJECT CODE: 11MT/PC/GT34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : CORE

PAPER : GRAPH THEORY

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A (5 X 2 = 10)

ANSWER ALL THE QUESTIONS

1. Define graph isomorphism.

- 2. Define covering and minimum covering of a graph.
- 3. Prove that every critical graph is a block.
- 4. State Kuratowski's theorem.
- 5. Define diameter of a graph.

 $SECTION - B \qquad (5 X 6 = 30)$

ANSWER ANY FIVE QUESTIONS

- 6. If G is a tree, Prove that $\varepsilon = v 1$.
- 7. Prove that a matching M in G is a maximum matching if and only if G contains no M augmenting path.
- 8. If $\delta > 0$, Prove that $\alpha' + \beta' = v$.
- 9. Prove that a nonempty connected graph is eulerian if and only if it has no vertices of odd degree.
- 10. If G is a simple graph, Prove that $\pi_k(G) = \pi_k(G e) \pi_k(G \cdot e)$ for any edge e of G.
- 11. Prove that K_5 is non-planar.
- 12. State the properties of circulant digraphs $G(n; s_1, s_2, ..., s_k)$.

SECTION - C

 $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 13. a) Prove that a graph is bipartite if and only if it contains no odd cycle.
 - b) Prove that an edge e of G is a cut edge of G if and only if e is contained in no cycle of G. (10 +10)
- 14. a) With usual notations prove that $\kappa \leq \kappa' \leq \delta$.
 - b) If G is a bipartite graph with bipartition (X, Y), Prove that G contains a matching that saturates every vertex in X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$.

(10 + 10)

- 15. a) State and prove Brooks' theorem.
 - b) If G is a simple graph with $v \ge 3$ and $\delta \ge v/2$, Prove that G is Hamiltonian.

(12 + 8)

- 16. a) State and prove Euler's formula for connected plane graph.
 - b) State and prove the five colour theorem.

(8 + 12)

- 17. a) Explain any five basic principles of network design.
 - b) State the properties of Kautz network K(d, n).
 - c) Compare de Bruijn network and Hypercube network.

(10 + 5 + 5)

